Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST test fans the flames for high-rise fire safety

27.11.2006
The blow-torch-like flames erupting from the windows of an abandoned, 16-story Chicago apartment building on Nov. 10 were certainly dramatic to watch from the street below.

However, for a team of investigators from the Chicago Fire Department (CFD), the Chicago Housing Authority (CHA) and the National Institute of Standards and Technology (NIST), the real excitement was what was happening to the environment inside the building’s corridors and stairwells.

The controlled fires on the third, 10th and 15th floors of the Windy City high-rise were part of a real-world laboratory experiment to study the effectiveness in multistory buildings of positive pressure ventilation (PPV). PPV is the use of powerful fans during fires to force smoke and heat from corridors and stairwells so that they stay passable and safe for both escaping occupants and entering emergency responders. In past events—such as the October 2003 blaze in a government building in Chicago where six people died—fire flow into corridors and stairwells often has resulted in tragedy.

Eleven NIST researchers worked with more than 70 CFD and CHA staff for the two weeks prior to the experiment to prepare the building. All 16 floors were equipped with temperature and pressure monitors while the three burn floors also included cameras, heat flux gauges and typical apartment furnishings. The entire setup was connected to the data acquisition center by seven miles of cable.

Once the fires were under way, a variety of ventilation tests were conducted. For example, in one test, a large fan was placed at the front door to force cool air up through the building. In another test, two smaller fans—one on the first floor and one two floors below the fire floor, both forcing air into the stairwell—were used to achieve the same PPV effect. Preliminary results from both scenarios show that PPV significantly reduced the temperature and amount of smoke in the corridors and stairwells outside the burn rooms. In one case, the temperature quickly dropped from 316 degrees Celsius to 16 degrees (600 degrees Fahrenheit to 60).

A NIST report on the tests is expected to be released in the spring of 2007.

Three major fan manufacturers and fire departments from New York City; Delaware County, Pa.; Toledo, Ohio; and Ottawa, Canada, also participated in the exercise. Underwriters Laboratories personnel used the setting to assess smoke detector activation in high-rise fires. The experiment was sponsored in part by the U.S. Department of Homeland Security.

Michael E. Newman | alfa
Further information:
http://www.nist.gov

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>