Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Research Uses Satellite Observation to Track Avian Flu

22.11.2006
An international, interdisciplinary team of researchers led by professor Xiangming Xiao of the University of New Hampshire is taking a novel scientific approach in an attempt to understand the ecology of the avian influenza, develop better methods of predicting its spread, and provide an accurate early warning system.

Xiao and colleagues were recently awarded $1.55 million for a four-year project funded by the U.S. National Institutes for Health (NIH) as part of the Ecology of Infectious Diseases (EID) Program jointly sponsored with the U.S. National Science Foundation. The EID program supports research projects that develop quantitative analysis and modeling capacity for better understanding the relationship between man-made environmental change and transmission of infectious agents.

The UNH project will use environmental remote sensing data from Earth observing satellites in combination with research in epidemiology, ornithology, and agriculture to provide a better picture of how the Highly Pathogenic Avian Influenza survives and gets transmitted among poultry and wild birds. The work focuses on China, where outbreaks of the virus have been prominent.

Xiao, of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) Complex Systems Research Center (CSRC), is the principal investigator for a team that includes scientists from the United Nations Food and Agriculture Organization and research institutes in Belgium and China. CSRC scientist Rob Braswell is also a co-investigator.

The ecology of the avian influenza involves a complex web of factors, including environmental settings, agricultural practices of rice production and harvesting, poultry production involving huge populations of free-grazing ducks, and the migratory behavior of wild bird populations. Depending on how all of these risk factors intermingle over time, the virus can be spread through the environment by infected wild birds or domestic poultry.

Says Xiao, “The strength of our group, and of this proposal, is that over the last few years we’ve been able to pull a lot of information out of satellite observations that can help unravel the complex risk factors involved in avian flu ecology.”

For example, using imagery of varying resolution from different types of satellites, the team can map and track the spatial-temporal dynamics of crop cultivations (when planted, harvested, etc.) and wetlands. Used in conjunction with other geospatial data of environment, bird migration, and poultry production, dynamic maps of “hot spots” and “hot times” for viral transmission can be developed in near-real-time mode and will aid the public, researchers, business, and decision-makers in preparing for a potential pandemic crisis.

Xiao notes that the four-year project represents a shift for EOS and CSRC in terms of their traditional areas of focus.

“The Institute as a whole and the center in particular have focused more on remote sensing in the areas of the carbon cycle, the water cycle, biogeochemical cycles and climate change, and this is really the first time we’ve gotten into human and animal health.”

Of this new direction EOS director Berrien Moore says, “We are very proud of Xiangming Xiao and his colleagues. Exploiting new multidisciplinary approaches to complex problems is at the heart of research at EOS. His work will not only contribute to successful strategies for mitigating a serious health threat, it will also introduce our students to new ways of attacking important and difficult challenges.”

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>