Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UNH Research Uses Satellite Observation to Track Avian Flu

An international, interdisciplinary team of researchers led by professor Xiangming Xiao of the University of New Hampshire is taking a novel scientific approach in an attempt to understand the ecology of the avian influenza, develop better methods of predicting its spread, and provide an accurate early warning system.

Xiao and colleagues were recently awarded $1.55 million for a four-year project funded by the U.S. National Institutes for Health (NIH) as part of the Ecology of Infectious Diseases (EID) Program jointly sponsored with the U.S. National Science Foundation. The EID program supports research projects that develop quantitative analysis and modeling capacity for better understanding the relationship between man-made environmental change and transmission of infectious agents.

The UNH project will use environmental remote sensing data from Earth observing satellites in combination with research in epidemiology, ornithology, and agriculture to provide a better picture of how the Highly Pathogenic Avian Influenza survives and gets transmitted among poultry and wild birds. The work focuses on China, where outbreaks of the virus have been prominent.

Xiao, of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) Complex Systems Research Center (CSRC), is the principal investigator for a team that includes scientists from the United Nations Food and Agriculture Organization and research institutes in Belgium and China. CSRC scientist Rob Braswell is also a co-investigator.

The ecology of the avian influenza involves a complex web of factors, including environmental settings, agricultural practices of rice production and harvesting, poultry production involving huge populations of free-grazing ducks, and the migratory behavior of wild bird populations. Depending on how all of these risk factors intermingle over time, the virus can be spread through the environment by infected wild birds or domestic poultry.

Says Xiao, “The strength of our group, and of this proposal, is that over the last few years we’ve been able to pull a lot of information out of satellite observations that can help unravel the complex risk factors involved in avian flu ecology.”

For example, using imagery of varying resolution from different types of satellites, the team can map and track the spatial-temporal dynamics of crop cultivations (when planted, harvested, etc.) and wetlands. Used in conjunction with other geospatial data of environment, bird migration, and poultry production, dynamic maps of “hot spots” and “hot times” for viral transmission can be developed in near-real-time mode and will aid the public, researchers, business, and decision-makers in preparing for a potential pandemic crisis.

Xiao notes that the four-year project represents a shift for EOS and CSRC in terms of their traditional areas of focus.

“The Institute as a whole and the center in particular have focused more on remote sensing in the areas of the carbon cycle, the water cycle, biogeochemical cycles and climate change, and this is really the first time we’ve gotten into human and animal health.”

Of this new direction EOS director Berrien Moore says, “We are very proud of Xiangming Xiao and his colleagues. Exploiting new multidisciplinary approaches to complex problems is at the heart of research at EOS. His work will not only contribute to successful strategies for mitigating a serious health threat, it will also introduce our students to new ways of attacking important and difficult challenges.”

David Sims | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>