Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Research Uses Satellite Observation to Track Avian Flu

22.11.2006
An international, interdisciplinary team of researchers led by professor Xiangming Xiao of the University of New Hampshire is taking a novel scientific approach in an attempt to understand the ecology of the avian influenza, develop better methods of predicting its spread, and provide an accurate early warning system.

Xiao and colleagues were recently awarded $1.55 million for a four-year project funded by the U.S. National Institutes for Health (NIH) as part of the Ecology of Infectious Diseases (EID) Program jointly sponsored with the U.S. National Science Foundation. The EID program supports research projects that develop quantitative analysis and modeling capacity for better understanding the relationship between man-made environmental change and transmission of infectious agents.

The UNH project will use environmental remote sensing data from Earth observing satellites in combination with research in epidemiology, ornithology, and agriculture to provide a better picture of how the Highly Pathogenic Avian Influenza survives and gets transmitted among poultry and wild birds. The work focuses on China, where outbreaks of the virus have been prominent.

Xiao, of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) Complex Systems Research Center (CSRC), is the principal investigator for a team that includes scientists from the United Nations Food and Agriculture Organization and research institutes in Belgium and China. CSRC scientist Rob Braswell is also a co-investigator.

The ecology of the avian influenza involves a complex web of factors, including environmental settings, agricultural practices of rice production and harvesting, poultry production involving huge populations of free-grazing ducks, and the migratory behavior of wild bird populations. Depending on how all of these risk factors intermingle over time, the virus can be spread through the environment by infected wild birds or domestic poultry.

Says Xiao, “The strength of our group, and of this proposal, is that over the last few years we’ve been able to pull a lot of information out of satellite observations that can help unravel the complex risk factors involved in avian flu ecology.”

For example, using imagery of varying resolution from different types of satellites, the team can map and track the spatial-temporal dynamics of crop cultivations (when planted, harvested, etc.) and wetlands. Used in conjunction with other geospatial data of environment, bird migration, and poultry production, dynamic maps of “hot spots” and “hot times” for viral transmission can be developed in near-real-time mode and will aid the public, researchers, business, and decision-makers in preparing for a potential pandemic crisis.

Xiao notes that the four-year project represents a shift for EOS and CSRC in terms of their traditional areas of focus.

“The Institute as a whole and the center in particular have focused more on remote sensing in the areas of the carbon cycle, the water cycle, biogeochemical cycles and climate change, and this is really the first time we’ve gotten into human and animal health.”

Of this new direction EOS director Berrien Moore says, “We are very proud of Xiangming Xiao and his colleagues. Exploiting new multidisciplinary approaches to complex problems is at the heart of research at EOS. His work will not only contribute to successful strategies for mitigating a serious health threat, it will also introduce our students to new ways of attacking important and difficult challenges.”

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>