Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global goal frenzy

28.11.2001


English clubs: statistically sound or struggling to score?
© AP/Martyn Hayhow


It’s official: English football teams score fewer goals.

Soccer teams worldwide are scoring more goals than they ought to be, whereas English teams seem to follow statistical expectations. The news may delight fans outside England, but it is puzzling the physicists who have found that the chance of a high-scoring game is significantly greater than it may first appear1.

John Greenhough and colleagues at Warwick University in Coventry, England, analysed the scores of over 135,000 football (soccer) games in the domestic leagues of 169 countries, played between and 1999 and 2001.



They found that games with a total of more than 10 goals occur only once in 10,000 English top division matches (about once every 30 years), whereas they make up about one in every 300 games worldwide - which means that there is roughly one per day.

Low scoring games seem to follow a random probability distribution: the chance of a particular score is more-or-less what one would expect if there is a constant, random probability of a goal at any moment throughout the game.

In such a random process, bigger scores become increasingly unlikely. There are more 1-1 draws or 2-0 victories than there are 6-1 victories, for example. According to the rules of statistics, the chance of a high score should become less and less likely, the higher the scores become - something called a Poisson distribution.

But physicists have known for several decades that football games are far from normal. The chance of goal scoring doesn’t stay even throughout a match, but depends on the previous number of near-goals. The Poisson distribution can be modified to allow for this, resulting in a ’negative binomial probability distribution’.

In a further analysis Greenhough and colleagues find that for English league and championship matches for the seasons 1970-1971 and 2000-2001 the total scores of all matches fit a negative binomial distribution well. In contrast, domestic matches worldwide produce many more ’extreme events’ (high scores) than predicted by this statistical distribution.

Why the difference? Does it mean that the English defence or goalkeepers are unusually good, or the strikers are unusually poor? Possibly, but there may be a statistical explanation: in terms of probability, football games may behave more like the stock market or earthquakes.

In recent years, statistical physicists have realized that probabilistic processes underlying these complex phenomena show something called strong correlations.

Correlations arise when the behaviour of one part of a system is strongly influenced by the behaviour of other parts. In football, this suggests that goals become increasingly likely as their number mounts up. Fans and players will already have an intuitive notion of the effect. When trailing by 5-0, say, a defence is more likely to ’crack’ than when the score is 2-0. Even if the teams are well matched, the game becomes more ’volatile’ if it reaches, say, 4-4: goals then begin to flow more readily.

Why English teams don’t show this effect so strongly is a question sure to provoke endless debate among armchair strategists.

References

  1. Greenhough, J., Birch, P. C., Chapman, S. C.& Rowlands, G. Football goal distributions and extremal statistics. Preprint, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-8.html

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>