Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global goal frenzy

28.11.2001


English clubs: statistically sound or struggling to score?
© AP/Martyn Hayhow


It’s official: English football teams score fewer goals.

Soccer teams worldwide are scoring more goals than they ought to be, whereas English teams seem to follow statistical expectations. The news may delight fans outside England, but it is puzzling the physicists who have found that the chance of a high-scoring game is significantly greater than it may first appear1.

John Greenhough and colleagues at Warwick University in Coventry, England, analysed the scores of over 135,000 football (soccer) games in the domestic leagues of 169 countries, played between and 1999 and 2001.



They found that games with a total of more than 10 goals occur only once in 10,000 English top division matches (about once every 30 years), whereas they make up about one in every 300 games worldwide - which means that there is roughly one per day.

Low scoring games seem to follow a random probability distribution: the chance of a particular score is more-or-less what one would expect if there is a constant, random probability of a goal at any moment throughout the game.

In such a random process, bigger scores become increasingly unlikely. There are more 1-1 draws or 2-0 victories than there are 6-1 victories, for example. According to the rules of statistics, the chance of a high score should become less and less likely, the higher the scores become - something called a Poisson distribution.

But physicists have known for several decades that football games are far from normal. The chance of goal scoring doesn’t stay even throughout a match, but depends on the previous number of near-goals. The Poisson distribution can be modified to allow for this, resulting in a ’negative binomial probability distribution’.

In a further analysis Greenhough and colleagues find that for English league and championship matches for the seasons 1970-1971 and 2000-2001 the total scores of all matches fit a negative binomial distribution well. In contrast, domestic matches worldwide produce many more ’extreme events’ (high scores) than predicted by this statistical distribution.

Why the difference? Does it mean that the English defence or goalkeepers are unusually good, or the strikers are unusually poor? Possibly, but there may be a statistical explanation: in terms of probability, football games may behave more like the stock market or earthquakes.

In recent years, statistical physicists have realized that probabilistic processes underlying these complex phenomena show something called strong correlations.

Correlations arise when the behaviour of one part of a system is strongly influenced by the behaviour of other parts. In football, this suggests that goals become increasingly likely as their number mounts up. Fans and players will already have an intuitive notion of the effect. When trailing by 5-0, say, a defence is more likely to ’crack’ than when the score is 2-0. Even if the teams are well matched, the game becomes more ’volatile’ if it reaches, say, 4-4: goals then begin to flow more readily.

Why English teams don’t show this effect so strongly is a question sure to provoke endless debate among armchair strategists.

References

  1. Greenhough, J., Birch, P. C., Chapman, S. C.& Rowlands, G. Football goal distributions and extremal statistics. Preprint, (2001).


PHILIP BALL | © Nature News Service
Further information:
http://www.nature.com/nsu/011129/011129-8.html

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>