Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stiff challenge to instability

22.11.2001


The secret of a steady hand is tightening the right muscles.




Controlling the stiffness of some of our muscles lets us manage tricky feats of manipulation, such as keeping a screwdriver in a screw, researchers have found1. We tune the stiffness to oppose motions in the direction of instability, such as the sideways slips that would let the screwdriver slide out of the slot.

Although demanding on the brain, this is the most energy-efficient strategy, say Mitsuo Kawato of ATR Human Information Science Laboratories in Kyoto, Japan, and co-workers. Tightening all the muscles involved in a task reduces errors, but uses more energy. So the central nervous system learns from experience to contract only the muscles controlling motions in the direction of the most detrimental errors.


The strategy could be emulated to design more energy-efficient industrial robots - although their computer-control systems would need to be capable of learning.

Another way of coping with the instabilities of fiddly tasks - the one currently used by robot engineers - is feedback control. Here, if motion begins to occur in an unwanted direction, the limb activates muscles that bring the object back to the desired position. This is basically how, for example, a tightrope walker avoids falling.

But feedback control is too slow for very small, rapid movements. The brain can’t register and compensate fast enough, so this approach can actually contribute to instabilities rather than counteracting them.

Control centre

To show that the central nervous system uses stiffness changes - called impedance control - to regulate unstable manipulations, Kawato’s team asked seated volunteers to make straight, horizontal arm movements from some starting position to a target position in front of them. If their movement strayed from a straight line, a robotic system attached to their forearm pushed them even further off course, forcing them to compensate.

Initially, the robot pushed subjects way off course. But after 100 or so trials, they learnt to counteract it, and most hit the target. By measuring the small deviations and the stabilizing forces the subjects’ arms exerted on the robotic system, the researchers estimated changes in muscle stiffness.

They found that the training runs taught subjects to tighten the muscles that control side-to-side movements more than those governing forward movements. In other words, the stiffening was tailored to resist the deflections that the robotic system produced. Muscles controlling backwards and forwards motions, which did not take the arm away from the intended path, stayed more loose.

  1. Burdet, E., Osu, R., Franklin, D. W., Milner, T. E. & Kawato, M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 414, 446 - 449, (2001).


PHILIP BALL | Nature News Service

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>