Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cincinnati Surgeon Leads First Test of Mobile Robotic Surgery

07.06.2006


A team of military, telecommunications and surgical experts led by University of Cincinnati (UC) faculty are using an unmanned aircraft and sophisticated communication tools to take the next step toward making “telesurgery” a reality.



Telesurgery is a new approach to surgical care in which a surgeon performs operations using a surgical robot and advanced computer technology on a patient located miles away.

Timothy Broderick, MD, assistant professor of surgery at UC and medical director for its Center for Surgical Innovation (CSI), is leading the first test of a prototype communications platform for mobile telesurgery: the High Altitude Platforms for Mobile Robotic Telesurgery (HAPsMRT).


This two-phase telesurgery experiment takes place between Simi Valley, California—a desolate and arid area surrounded by hills and plains—and Seattle, Washington, June 5–9.

The HAPsMRT model—developed in collaboration with the U.S. Army’s Telemedicine and Advanced Technology Research Center and the University of Washington—uses an unmanned airborne vehicle (UAV), or “drone,” as the communications connecting point between a surgeon in one part of the country and a patient located hundreds of miles away.

Current telesurgery tools rely on satellite communication and streaming video delivered via high-speed Internet. In remote locations, explains Dr. Broderick, satellite signals are not always dependable and can result in delays that make surgery difficult.

“Reliable, high-speed communication signals are critical for telesurgery to work in day-to-day patient care,” explains Dr. Broderick. “Our ultimate goal is to eliminate the communications lag to enable the surgeon to safely operate on a remote patient in real time.”

HAPsMRT utilizes low-latency communication transmissions, so the communication signals travel over a shorter distance and with fewer delays.

In phase one of the mission, a simulated patient and robot will be located five miles north of Dr. Broderick at the AeroVironment Flying Field. Dr. Broderick will sit behind the surgical robot control console and operate on the simulated patient using streaming video fed into the console from the UAV.

In phase two of the experiment, Dr. Broderick will travel to the University of Washington and operate on the same simulated patient in Simi Valley from behind a surgical robot control console in Seattle.

Throughout the mission, the research team will evaluate the UAV’s communications capabilities—including speed and quality of video streaming, information time lapses and suturing precision—to see how they are affected by an extreme environment.

“We need to find better ways of delivering emergency and specialized surgical care to patients when they are hundreds of miles away from the nearest hospital,” explains Dr. Broderick. “When it’s perfected, telesurgery could quickly become the medical norm for remote places, including battlefields, extremely rural towns—even space.”

Founded in June 2003, the CSI is an interdisciplinary collaboration between the departments of surgery and biomedical engineering at UC and leading government and industry partners.

One of only a handful of centers of its kind across the nation and the only one in the Midwest, the CSI focuses on addressing unmet medical needs, such as developing minimally invasive robotic surgery and telesurgery techniques that will improve the way physicians deliver and teach medicine.

The 3,700-square-foot facility includes an eight-bench teaching lab with advanced audiovisual and telecommunications capabilities—such as international videoconferencing and direct linkages to the operating rooms at University Hospital, UC’s primary teaching facility. The center also has a sterile operating room outfitted with specialized medical equipment, including the da Vinci surgical robot.

In March 2005, Dr. Broderick and his UC team led the nation’s first live telesurgery, using the da Vinci surgical robot, from Ohio to California.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>