Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cincinnati Surgeon Leads First Test of Mobile Robotic Surgery

07.06.2006


A team of military, telecommunications and surgical experts led by University of Cincinnati (UC) faculty are using an unmanned aircraft and sophisticated communication tools to take the next step toward making “telesurgery” a reality.



Telesurgery is a new approach to surgical care in which a surgeon performs operations using a surgical robot and advanced computer technology on a patient located miles away.

Timothy Broderick, MD, assistant professor of surgery at UC and medical director for its Center for Surgical Innovation (CSI), is leading the first test of a prototype communications platform for mobile telesurgery: the High Altitude Platforms for Mobile Robotic Telesurgery (HAPsMRT).


This two-phase telesurgery experiment takes place between Simi Valley, California—a desolate and arid area surrounded by hills and plains—and Seattle, Washington, June 5–9.

The HAPsMRT model—developed in collaboration with the U.S. Army’s Telemedicine and Advanced Technology Research Center and the University of Washington—uses an unmanned airborne vehicle (UAV), or “drone,” as the communications connecting point between a surgeon in one part of the country and a patient located hundreds of miles away.

Current telesurgery tools rely on satellite communication and streaming video delivered via high-speed Internet. In remote locations, explains Dr. Broderick, satellite signals are not always dependable and can result in delays that make surgery difficult.

“Reliable, high-speed communication signals are critical for telesurgery to work in day-to-day patient care,” explains Dr. Broderick. “Our ultimate goal is to eliminate the communications lag to enable the surgeon to safely operate on a remote patient in real time.”

HAPsMRT utilizes low-latency communication transmissions, so the communication signals travel over a shorter distance and with fewer delays.

In phase one of the mission, a simulated patient and robot will be located five miles north of Dr. Broderick at the AeroVironment Flying Field. Dr. Broderick will sit behind the surgical robot control console and operate on the simulated patient using streaming video fed into the console from the UAV.

In phase two of the experiment, Dr. Broderick will travel to the University of Washington and operate on the same simulated patient in Simi Valley from behind a surgical robot control console in Seattle.

Throughout the mission, the research team will evaluate the UAV’s communications capabilities—including speed and quality of video streaming, information time lapses and suturing precision—to see how they are affected by an extreme environment.

“We need to find better ways of delivering emergency and specialized surgical care to patients when they are hundreds of miles away from the nearest hospital,” explains Dr. Broderick. “When it’s perfected, telesurgery could quickly become the medical norm for remote places, including battlefields, extremely rural towns—even space.”

Founded in June 2003, the CSI is an interdisciplinary collaboration between the departments of surgery and biomedical engineering at UC and leading government and industry partners.

One of only a handful of centers of its kind across the nation and the only one in the Midwest, the CSI focuses on addressing unmet medical needs, such as developing minimally invasive robotic surgery and telesurgery techniques that will improve the way physicians deliver and teach medicine.

The 3,700-square-foot facility includes an eight-bench teaching lab with advanced audiovisual and telecommunications capabilities—such as international videoconferencing and direct linkages to the operating rooms at University Hospital, UC’s primary teaching facility. The center also has a sterile operating room outfitted with specialized medical equipment, including the da Vinci surgical robot.

In March 2005, Dr. Broderick and his UC team led the nation’s first live telesurgery, using the da Vinci surgical robot, from Ohio to California.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>