Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cincinnati Surgeon Leads First Test of Mobile Robotic Surgery

07.06.2006


A team of military, telecommunications and surgical experts led by University of Cincinnati (UC) faculty are using an unmanned aircraft and sophisticated communication tools to take the next step toward making “telesurgery” a reality.



Telesurgery is a new approach to surgical care in which a surgeon performs operations using a surgical robot and advanced computer technology on a patient located miles away.

Timothy Broderick, MD, assistant professor of surgery at UC and medical director for its Center for Surgical Innovation (CSI), is leading the first test of a prototype communications platform for mobile telesurgery: the High Altitude Platforms for Mobile Robotic Telesurgery (HAPsMRT).


This two-phase telesurgery experiment takes place between Simi Valley, California—a desolate and arid area surrounded by hills and plains—and Seattle, Washington, June 5–9.

The HAPsMRT model—developed in collaboration with the U.S. Army’s Telemedicine and Advanced Technology Research Center and the University of Washington—uses an unmanned airborne vehicle (UAV), or “drone,” as the communications connecting point between a surgeon in one part of the country and a patient located hundreds of miles away.

Current telesurgery tools rely on satellite communication and streaming video delivered via high-speed Internet. In remote locations, explains Dr. Broderick, satellite signals are not always dependable and can result in delays that make surgery difficult.

“Reliable, high-speed communication signals are critical for telesurgery to work in day-to-day patient care,” explains Dr. Broderick. “Our ultimate goal is to eliminate the communications lag to enable the surgeon to safely operate on a remote patient in real time.”

HAPsMRT utilizes low-latency communication transmissions, so the communication signals travel over a shorter distance and with fewer delays.

In phase one of the mission, a simulated patient and robot will be located five miles north of Dr. Broderick at the AeroVironment Flying Field. Dr. Broderick will sit behind the surgical robot control console and operate on the simulated patient using streaming video fed into the console from the UAV.

In phase two of the experiment, Dr. Broderick will travel to the University of Washington and operate on the same simulated patient in Simi Valley from behind a surgical robot control console in Seattle.

Throughout the mission, the research team will evaluate the UAV’s communications capabilities—including speed and quality of video streaming, information time lapses and suturing precision—to see how they are affected by an extreme environment.

“We need to find better ways of delivering emergency and specialized surgical care to patients when they are hundreds of miles away from the nearest hospital,” explains Dr. Broderick. “When it’s perfected, telesurgery could quickly become the medical norm for remote places, including battlefields, extremely rural towns—even space.”

Founded in June 2003, the CSI is an interdisciplinary collaboration between the departments of surgery and biomedical engineering at UC and leading government and industry partners.

One of only a handful of centers of its kind across the nation and the only one in the Midwest, the CSI focuses on addressing unmet medical needs, such as developing minimally invasive robotic surgery and telesurgery techniques that will improve the way physicians deliver and teach medicine.

The 3,700-square-foot facility includes an eight-bench teaching lab with advanced audiovisual and telecommunications capabilities—such as international videoconferencing and direct linkages to the operating rooms at University Hospital, UC’s primary teaching facility. The center also has a sterile operating room outfitted with specialized medical equipment, including the da Vinci surgical robot.

In March 2005, Dr. Broderick and his UC team led the nation’s first live telesurgery, using the da Vinci surgical robot, from Ohio to California.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>