Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cincinnati Surgeon Leads First Test of Mobile Robotic Surgery

07.06.2006


A team of military, telecommunications and surgical experts led by University of Cincinnati (UC) faculty are using an unmanned aircraft and sophisticated communication tools to take the next step toward making “telesurgery” a reality.



Telesurgery is a new approach to surgical care in which a surgeon performs operations using a surgical robot and advanced computer technology on a patient located miles away.

Timothy Broderick, MD, assistant professor of surgery at UC and medical director for its Center for Surgical Innovation (CSI), is leading the first test of a prototype communications platform for mobile telesurgery: the High Altitude Platforms for Mobile Robotic Telesurgery (HAPsMRT).


This two-phase telesurgery experiment takes place between Simi Valley, California—a desolate and arid area surrounded by hills and plains—and Seattle, Washington, June 5–9.

The HAPsMRT model—developed in collaboration with the U.S. Army’s Telemedicine and Advanced Technology Research Center and the University of Washington—uses an unmanned airborne vehicle (UAV), or “drone,” as the communications connecting point between a surgeon in one part of the country and a patient located hundreds of miles away.

Current telesurgery tools rely on satellite communication and streaming video delivered via high-speed Internet. In remote locations, explains Dr. Broderick, satellite signals are not always dependable and can result in delays that make surgery difficult.

“Reliable, high-speed communication signals are critical for telesurgery to work in day-to-day patient care,” explains Dr. Broderick. “Our ultimate goal is to eliminate the communications lag to enable the surgeon to safely operate on a remote patient in real time.”

HAPsMRT utilizes low-latency communication transmissions, so the communication signals travel over a shorter distance and with fewer delays.

In phase one of the mission, a simulated patient and robot will be located five miles north of Dr. Broderick at the AeroVironment Flying Field. Dr. Broderick will sit behind the surgical robot control console and operate on the simulated patient using streaming video fed into the console from the UAV.

In phase two of the experiment, Dr. Broderick will travel to the University of Washington and operate on the same simulated patient in Simi Valley from behind a surgical robot control console in Seattle.

Throughout the mission, the research team will evaluate the UAV’s communications capabilities—including speed and quality of video streaming, information time lapses and suturing precision—to see how they are affected by an extreme environment.

“We need to find better ways of delivering emergency and specialized surgical care to patients when they are hundreds of miles away from the nearest hospital,” explains Dr. Broderick. “When it’s perfected, telesurgery could quickly become the medical norm for remote places, including battlefields, extremely rural towns—even space.”

Founded in June 2003, the CSI is an interdisciplinary collaboration between the departments of surgery and biomedical engineering at UC and leading government and industry partners.

One of only a handful of centers of its kind across the nation and the only one in the Midwest, the CSI focuses on addressing unmet medical needs, such as developing minimally invasive robotic surgery and telesurgery techniques that will improve the way physicians deliver and teach medicine.

The 3,700-square-foot facility includes an eight-bench teaching lab with advanced audiovisual and telecommunications capabilities—such as international videoconferencing and direct linkages to the operating rooms at University Hospital, UC’s primary teaching facility. The center also has a sterile operating room outfitted with specialized medical equipment, including the da Vinci surgical robot.

In March 2005, Dr. Broderick and his UC team led the nation’s first live telesurgery, using the da Vinci surgical robot, from Ohio to California.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Interdisciplinary Research:

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

nachricht New formulas for exploring the age structure of non-linear dynamical systems
23.01.2018 | Max-Planck-Institut für Biogeochemie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>