Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New angle on vision

08.11.2001


We judge distance from the ground up.
© Photodisc


Our brains use angular measurements to decide how far away objects are.

Even if trigonometry wasn’t your strong suit in school, your brain uses it constantly. You judge distance by measuring the angle between the ground and your line of sight to an object, a new study shows. The finding could improve the design of robots and artificial vision systems1.

Volunteers who looked through prisms that increased this angle thought objects were closer than they really were, missing them when throwing beanbags or trying to walk to them blindfolded.



Some prism-wearing participants even leaned forward, imagining that the ground was tilted away from them. "They tried to adjust their body perpendicular to the perceived ground surface," says Teng Leng Ooi of the Southern College of Optometry in Memphis, Tennessee, a member of the research team.

After just 20 minutes, volunteers adjusted to the distortion and judged distances correctly. This suggests that the brain possesses a ’plastic’ mechanism to tune its vision system to a constantly changing environment, the researchers say. When volunteers took the prisms off, they temporarily went to the opposite extreme, overestimating distances.

The experiments take a more "ecological" approach to vision processing than a lot of previous research, says Hal Sedgwick, who studies visual perception at the SUNY College of Optometry in New York City. "Rather than thinking of perception as occurring through an empty, abstract space, this looks at it from the point of view of an organism living in an environment, locating objects relative to the ground."


The long view

The idea that humans use the angle with the ground to measure distance is an old one. Ancient Chinese artists drew distant objects higher in the field of view, unlike European artists who generally relied on perspective, in which lines meet at infinity. The eleventh-century Arabic scholar Alhazen, whom some credit with having invented the scientific method, also hypothesized that humans use angles with the ground to judge distances.

Alhazen’s idea faded from attention over the years, and was resurrected only in the middle of the twentieth century, when psychologist James Gibson independently reached the same conclusion while helping to train pilots during World War II. Since then, however, the theory has lacked direct evidence.

For this reason, "this new study is quite important work," says Sedgwick. Ooi and colleagues have, he believes, produced "convincing evidence supporting the ground theory".

Understanding how humans process vision could help engineers to design more realistic virtual-reality systems and build robots that can navigate their environment better, Ooi suggests. It could even help people suffering from brain damage that interferes with their distance estimation, she says. "Research to elucidate space vision should help us predict the problems encountered by brain-injured patients, and to fix their problems through rehabilitation or compensatory robotic devices."

References

  1. Ooi, T. L. et al. Distance determined by the angular declination below the horizon. Nature, 414, 197 - 200, (2001).


ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-11.html

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>