Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New angle on vision

08.11.2001


We judge distance from the ground up.
© Photodisc


Our brains use angular measurements to decide how far away objects are.

Even if trigonometry wasn’t your strong suit in school, your brain uses it constantly. You judge distance by measuring the angle between the ground and your line of sight to an object, a new study shows. The finding could improve the design of robots and artificial vision systems1.

Volunteers who looked through prisms that increased this angle thought objects were closer than they really were, missing them when throwing beanbags or trying to walk to them blindfolded.



Some prism-wearing participants even leaned forward, imagining that the ground was tilted away from them. "They tried to adjust their body perpendicular to the perceived ground surface," says Teng Leng Ooi of the Southern College of Optometry in Memphis, Tennessee, a member of the research team.

After just 20 minutes, volunteers adjusted to the distortion and judged distances correctly. This suggests that the brain possesses a ’plastic’ mechanism to tune its vision system to a constantly changing environment, the researchers say. When volunteers took the prisms off, they temporarily went to the opposite extreme, overestimating distances.

The experiments take a more "ecological" approach to vision processing than a lot of previous research, says Hal Sedgwick, who studies visual perception at the SUNY College of Optometry in New York City. "Rather than thinking of perception as occurring through an empty, abstract space, this looks at it from the point of view of an organism living in an environment, locating objects relative to the ground."


The long view

The idea that humans use the angle with the ground to measure distance is an old one. Ancient Chinese artists drew distant objects higher in the field of view, unlike European artists who generally relied on perspective, in which lines meet at infinity. The eleventh-century Arabic scholar Alhazen, whom some credit with having invented the scientific method, also hypothesized that humans use angles with the ground to judge distances.

Alhazen’s idea faded from attention over the years, and was resurrected only in the middle of the twentieth century, when psychologist James Gibson independently reached the same conclusion while helping to train pilots during World War II. Since then, however, the theory has lacked direct evidence.

For this reason, "this new study is quite important work," says Sedgwick. Ooi and colleagues have, he believes, produced "convincing evidence supporting the ground theory".

Understanding how humans process vision could help engineers to design more realistic virtual-reality systems and build robots that can navigate their environment better, Ooi suggests. It could even help people suffering from brain damage that interferes with their distance estimation, she says. "Research to elucidate space vision should help us predict the problems encountered by brain-injured patients, and to fix their problems through rehabilitation or compensatory robotic devices."

References

  1. Ooi, T. L. et al. Distance determined by the angular declination below the horizon. Nature, 414, 197 - 200, (2001).


ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-11.html

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>