Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New angle on vision

08.11.2001


We judge distance from the ground up.
© Photodisc


Our brains use angular measurements to decide how far away objects are.

Even if trigonometry wasn’t your strong suit in school, your brain uses it constantly. You judge distance by measuring the angle between the ground and your line of sight to an object, a new study shows. The finding could improve the design of robots and artificial vision systems1.

Volunteers who looked through prisms that increased this angle thought objects were closer than they really were, missing them when throwing beanbags or trying to walk to them blindfolded.



Some prism-wearing participants even leaned forward, imagining that the ground was tilted away from them. "They tried to adjust their body perpendicular to the perceived ground surface," says Teng Leng Ooi of the Southern College of Optometry in Memphis, Tennessee, a member of the research team.

After just 20 minutes, volunteers adjusted to the distortion and judged distances correctly. This suggests that the brain possesses a ’plastic’ mechanism to tune its vision system to a constantly changing environment, the researchers say. When volunteers took the prisms off, they temporarily went to the opposite extreme, overestimating distances.

The experiments take a more "ecological" approach to vision processing than a lot of previous research, says Hal Sedgwick, who studies visual perception at the SUNY College of Optometry in New York City. "Rather than thinking of perception as occurring through an empty, abstract space, this looks at it from the point of view of an organism living in an environment, locating objects relative to the ground."


The long view

The idea that humans use the angle with the ground to measure distance is an old one. Ancient Chinese artists drew distant objects higher in the field of view, unlike European artists who generally relied on perspective, in which lines meet at infinity. The eleventh-century Arabic scholar Alhazen, whom some credit with having invented the scientific method, also hypothesized that humans use angles with the ground to judge distances.

Alhazen’s idea faded from attention over the years, and was resurrected only in the middle of the twentieth century, when psychologist James Gibson independently reached the same conclusion while helping to train pilots during World War II. Since then, however, the theory has lacked direct evidence.

For this reason, "this new study is quite important work," says Sedgwick. Ooi and colleagues have, he believes, produced "convincing evidence supporting the ground theory".

Understanding how humans process vision could help engineers to design more realistic virtual-reality systems and build robots that can navigate their environment better, Ooi suggests. It could even help people suffering from brain damage that interferes with their distance estimation, she says. "Research to elucidate space vision should help us predict the problems encountered by brain-injured patients, and to fix their problems through rehabilitation or compensatory robotic devices."

References

  1. Ooi, T. L. et al. Distance determined by the angular declination below the horizon. Nature, 414, 197 - 200, (2001).


ERICA KLARREICH | © Nature News Service
Further information:
http://www.nature.com/nsu/011108/011108-11.html

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>