Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subliminal sights educate brain

25.10.2001


Today’s busy world could overwhealm our ever-learning brains.
© Photodisc


Paying attention isn’t the only way to learn.

You must pay attention to learn, teachers say. Not necessarily, US psychologists now argue: sights we are unaware of can have a lasting impact on our brains.

Subliminal training can improve our ability to see moving dots, Takeo Watanabe and his co-workers at Boston University, Massachusetts, have found. "Without noticing, we are unconsciously learning," Watanabe says. Repeated exposure to objects we are oblivious to "could have a tremendous effect on our brains", he says.



The findings show that for basic visual processes "the brain is never resting", says Robert Stickgold, who studies consciousness at Harvard University in Cambridge, Massachusetts.

Psychologists must now ask whether we can learn more complex tasks without paying attention, says Stickgold. Although for students looking to skip school he cautions that "No one’s going to learn a foreign language without going to lessons."

Live and learn

We are learning automatically as we walk around, explains Ken Nakayama, who studies vision at Harvard. "Patterns pass us all the time," he says, like cars and people on the street. Subconscious learning may be an efficient way to absorb these sideline features without trying. "You can’t pay attention to everything," he says.

Such a learning strategy may have evolved to help us incorporate recurrent, and therefore important, information about our environment into our memory, thinks Watanabe. Animal movements are a good example.

The results also suggest we cannot screen out irrelevant, unwanted information. This is worrying, given that today we are bombarded with moving images from TVs, neon signs and even mobile phone displays. "The less the world we’re living in is like the one we evolved in, the more the mechanism is inappropriate," says Stickgold.

Join the dots

Watanabe’s team asked subjects to look at letters on a screen. Surrounding the letters were dots moving randomly, like the background fuzz after TV programmes have ended for the night. The participants did not realise that 5% of the dots were moving consistently in one direction.

After 25 days of subliminal training, people were tested on their ability to see a detectable level (10%) of dots moving in one direction. They were 20% better than normal at seeing the movement orientation they had previously been exposed to1.

Certain features of an object, such as movement or colour, make nerve cells in the brain fire. Subliminal training may fine-tune these cells, making them especially sensitive to a particular direction of motion, the team thinks.

References
  1. Watanabe, T., Nanez, J.E. & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844 - 848, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-12.html
http://www.nature.com/nsu/

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>