Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Subliminal sights educate brain

25.10.2001


Today’s busy world could overwhealm our ever-learning brains.
© Photodisc


Paying attention isn’t the only way to learn.

You must pay attention to learn, teachers say. Not necessarily, US psychologists now argue: sights we are unaware of can have a lasting impact on our brains.

Subliminal training can improve our ability to see moving dots, Takeo Watanabe and his co-workers at Boston University, Massachusetts, have found. "Without noticing, we are unconsciously learning," Watanabe says. Repeated exposure to objects we are oblivious to "could have a tremendous effect on our brains", he says.



The findings show that for basic visual processes "the brain is never resting", says Robert Stickgold, who studies consciousness at Harvard University in Cambridge, Massachusetts.

Psychologists must now ask whether we can learn more complex tasks without paying attention, says Stickgold. Although for students looking to skip school he cautions that "No one’s going to learn a foreign language without going to lessons."

Live and learn

We are learning automatically as we walk around, explains Ken Nakayama, who studies vision at Harvard. "Patterns pass us all the time," he says, like cars and people on the street. Subconscious learning may be an efficient way to absorb these sideline features without trying. "You can’t pay attention to everything," he says.

Such a learning strategy may have evolved to help us incorporate recurrent, and therefore important, information about our environment into our memory, thinks Watanabe. Animal movements are a good example.

The results also suggest we cannot screen out irrelevant, unwanted information. This is worrying, given that today we are bombarded with moving images from TVs, neon signs and even mobile phone displays. "The less the world we’re living in is like the one we evolved in, the more the mechanism is inappropriate," says Stickgold.

Join the dots

Watanabe’s team asked subjects to look at letters on a screen. Surrounding the letters were dots moving randomly, like the background fuzz after TV programmes have ended for the night. The participants did not realise that 5% of the dots were moving consistently in one direction.

After 25 days of subliminal training, people were tested on their ability to see a detectable level (10%) of dots moving in one direction. They were 20% better than normal at seeing the movement orientation they had previously been exposed to1.

Certain features of an object, such as movement or colour, make nerve cells in the brain fire. Subliminal training may fine-tune these cells, making them especially sensitive to a particular direction of motion, the team thinks.

References
  1. Watanabe, T., Nanez, J.E. & Sasaki, Y. Perceptual learning without perception. Nature, 413, 844 - 848, (2001).


HELEN PEARSON | Nature News Service
Further information:
http://www.nature.com/nsu/011025/011025-12.html
http://www.nature.com/nsu/

More articles from Interdisciplinary Research:

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

nachricht The Attraction Effect: how our Brains Can Be Influenced
30.01.2017 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>