Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists and engineers apply nature’s design to human problems


Copying the ideas of others is usually frowned upon, but when it comes to the work of Mother Nature, scientists are finding they can use nature as a template.

An interdisciplinary group of scientists and engineers at the Georgia Institute of Technology recently formed the Center for Biologically Inspired Design (CBID) with the goal of capitalizing on the rich source of design solutions present in biological processes. The researchers believe nature can inspire design and engineering solutions that are efficient, practical and sustainable and thus have the potential to greatly enhance new technologies, materials and processes.

"Biology can be a powerful guide to understanding problems in design and engineering," said Associate Professor of Biology Marc Weissburg, CBID co-director. "In comparative physiology, we teach that every animal has to solve a particular problem to survive, so every animal is a design solution for a particular problem.

"They can provide solutions for more efficient manufacturing and design of materials with new capabilities, for example. These are things the biological world has solved, and if you study them, you have the opportunity to apply that knowledge in the human sector. You can also extend that reasoning to ecological processes. These are guiding principles behind the Georgia Tech Center for Biologically Inspired Design." CBID’s mission is to promote world-class interdisciplinary research and education at Georgia Tech in biologically inspired design. CBID researchers also want to communicate to government and industry officials that nature can provide unique design solutions to the problems they must address. CBID director and Professor of Biology Jeannette Yen is beginning this process with an invited talk on the center’s mission and activities on Oct. 29 at the Bioneers Southeast Forum on the Atlanta campus of the Savannah College of Art & Design. This conference is one of 20 similar "town hall" meetings held annually in North America.

Bioneers is a network of citizens, scientists and entrepreneurs that explores practical solutions adapted from natural systems and native cultures and then applies these solutions to fundamental environmental, economic and social challenges. Its long-term goal is to engage leaders in various fields in a conversation and learning process to help them understand the root causes of the region’s economic, social and environmental problems, according to its Website ( Then leaders can make decisions based on the long-term impacts on the broader community and the natural environment.

"This is a key invitation for us," Yen said. "It’s a great opportunity to get connected locally with leaders in the region." Yen will present the mission and activities of CBID, which formed this past summer with a three-year internal seed grant. The idea for the center began with discussions between Yen and Weissburg. Weissburg’s interest grew out of his research for the Office of Naval Research on understanding olfactory guidance in crabs. The Navy was interested in this process because it wanted to build autonomous devices with a similar capability, he explained.

Then, earlier this year, Yen, Weissburg and Professor of Industrial and Systems Engineering Craig Tovey studied with Bioneer and biomimicry expert Janine Benyus for 10 days in Costa Rica.

"We wanted to see how nature does things like gathering and transporting energy, and then see if we can translate those processes for human applications," Yen said. "Georgia Tech is a great place to do this kind of research. It provides engineers who want to apply their expertise with biologists a new way to design solutions to problems."

After this experience, the idea for the center developed further with the help of a biological metaphor – that of an "invasive" species, with the Center as the new species and Georgia Tech as the established community that is productive and successful. "Invasive species can have a negative connotation, but we’re not talking about disrupting the community," Weissburg explained. "We’re talking about augmenting it and adding to its functionality and activity. We used the analogy of a new species trying to fit into a community as a way to think about what our center could do to increase the productivity of the Tech ’ecosystem.’"

As CBID encourages interaction among its initial 17 members, Yen expects an increase in biomimetic research – that is, research in biologically inspired design. Already, however, biomimetic research projects are under way in biosensing, materials design, locomotory devices, systems organization and "green" technology.

Examples include:

  • Associate Professor of Mechanical Engineering Minami Yoda is developing an auditory retina based on the fish ear.
  • School of Materials Science and Engineering Professor Ken Sandhage and School of Chemistry and Biochemistry Assistant Professor Nils Kröger explore nanostructure synthesis via the self-assembled, biomineralized template -- the marine diatom.
  • Tovey is designing Web-hosting optimization techniques based on the foraging strategy of honey bees.
  • Assistant Professor of Applied Physiology Young-Hui Chang and Assistant Professor of Biomedical Engineering Lena Ting use neuro-mechanical control principles derived from animals to engineer prosthetics and robots.

Yen noted that biomimetry even offers inspiration for the way students -- and faculty – learn. "Like animals, we can learn by playing," Yen explained. "We’re looking to nature as our template."

Jane M. Sanders | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>