Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU advance could provide insight into human’s ability to recognize patterns

11.05.2004


Computers, for all of their computational muscle, do not hold a candle to humans in the ability to recognize patterns or images. This basic quandary in computational theory – why can computers crunch numbers but cannot efficiently process images – has stumped scientists for many years.



Now, researchers at Arizona State University have come up with a model that could help unlock some of the secrets of how humans process patterns and possibly lead to smarter robots. The advance concerns oscillatory associative memory networks, basically the ability to see a pattern, store it and then retrieve that pattern when needed. A good example is how humans can recognize faces.

"It is still a really big mystery as to how human beings can remember so many faces, but that it is extremely difficult for a computer to do," said Ying-Cheng Lai, an ASU professor of mathematics and a professor of electrical engineering in the Ira A. Fulton School of Engineering.


Lai, along with former post-doctoral fellow Takashi Nishikawa (now at Southern Methodist University), and former ASU professor Frank Hoppenstaedt (now at New York University), published their research, "Capacity of Oscillatory Associative Memory Networks with Error-Free Retrieval," in a recent issue of American Physical Society’s Physical Review Letters.

Although what the team developed is a mathematical and computational model for oscillatory networks that can be used associated memory devices, implementation of the model is possible by using electronic circuits as phase-locked loops.

"Computers can do very fast computation that humans cannot do, but humans can recognize patterns so much better than computers," Lai said. "The question is why. What is the fundamental mechanism that a biological system like us can make use of and try to memorize patterns."

A key to pattern recognition is the use of oscillatory associative memory networks. Lai said the human brain and its use of neurons have a great advantage over computer memory in that they employ oscillatory memory systems, systems where the individual components can oscillate or freely change between states. In contrast, digital computer memories operate on a binary number system (1 or 0).

An important advance was made in this area in the 1980s by John Hopfield, a Caltech researcher at the time, who developed the "Hopfield network" to help understand how biological memory works. But the main drawback of the Hopfield network is that while it represents how biological memory works, it employs discrete state memory units while most biological units are oscillatory.

"Our work is the first demonstration of the possibility for oscillatory networks to have the same memory capacity as for the discrete-state Hopfield network," Lai said. "When the Hopfield network was invented, it was considered a revolutionary step in understanding how biological memory works.

"A difficulty with the Hopfield network is that it consists of units (or artificial neurons) with two discrete states," he added. "It is therefore desirable to study oscillatory networks but this has been a struggle, as all previous work shows that the capacities of these networks are very low compared with that of the Hopfield network. In a sense, our work helps solve this difficulty."

Lai said that the most immediate application for this research is in artificial intelligence, where researchers try to get computers to reason as a human would. He adds that this advance could possibly allow the development of artificial memory devices that would use oscillators, which are robust and secure.

This could mean robots, or other electro-mechanical devices controlled by an electronic "brain" that could recognize patterns and do some form of reasoning on the fly -- basically respond to a much wider range of unanticipated situations -- to perform its task. This would be a big step towards smarter robots.

But the real payoff in Lai’s research could be what it may provide in terms of basic research into the human brain itself. Developing a good model of the human brain, one that could more closely replicate the actual function of the brain as it reasons, might help understand more of its operational basis and how it developed into the organ it is today.

"Biological systems, such as cells and neurons, are oscillators," Lai explained. "Demonstrating that oscillatory networks can have memories with high capacity is one more step toward understanding biological memory.

"Although the classical Hopfield network provides a plausible mechanism for memory, it has the drawback that it is too idealized as compared with real, oscillatory biological networks," he added. "We hope our work will stimulate further studies of the origin of memory based systems on a more realistic oscillatory network."


Source: Ying-Cheng Lai, (480) 965-6668

Skip Derra | EurekAlert!
Further information:
http://www.asu.edu/asunews/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>