Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery offers clues to origin of life

23.04.2004


A new discovery of microbial activity in 3.5 billion-year-old volcanic rock and one of earth’s earliest signs of geological existence sheds new light on the antiquity of life, says University of Alberta researchers who are part of a team that made the groundbreaking finding.



"People have been looking for signs of early bacteria for the last 50 years," said Dr. Karlis Muehlenbachs, from the U of A’s Faculty of Science and an author on the paper just published in the journal Science. "A variety have claimed they’ve seen it and subsequently been challenged as being flawed. We are suggesting that we have clear evidence of life prospering in an environment where no one else has bothered to look."

The research team, also made up of Drs. Harald Furnes from the University of Bergen in Norway, Neil Banerjee from the U of A, Hubert Staudigel from the University of California and Maarten de Wit from the University of Cape Town, studied samples of pillow lava taken from the Mesoarchean Barberton Greenstone Belt in South Africa. They found mineralized tubes that were formed in the pillow lava, suggesting microbes colonized basaltic glass of the early oceanic crust, much in the same way as they do modern volcanic glass.


This evidence of life in the basaltic glass on the seafloor comes in the form of textures produced by microbes as they dissolve the glass, said Banerjee. "These textures include channels or tubes produced by the microbe as it tunnels through the glass, possibly using the glass as a source of nutrients," he said. "We have also found traces of carbon, nitrogen, phosphorous and potassium-all essential to life-as well as DNA associated with the microbial alternation textures in the recent basaltic glass samples."

The team then compared its $3.5 billion-year-old samples to the modern pillow lava on the seafloor using several sophisticated tests and was able to find much evidence of life. To date the microbial activity, the team compared the relationship between the tubular structures and the metamorphic mineral growth.

"On the microscopic level, we see that during metamorphism, the new minerals cross cut the preserved biological features," said Muehlenbachs. "This means that the biological features pre date the metamorphism, leading to the conclusion that the microbes were attacking the glass 3.48 billion years ago-very soon after the glass chilled and lasting a few million years, perhaps until the usual geological processes buried and cooked them."

Despite challenges to previous research claiming evidence of life activity, this research team is certain its evidence is solid. "In other discoveries, there has been much discussion and argument about the rock type and where it came from," said Muehlenbachs. "Everyone agrees our rock is from the sea floor-that’s a sure thing. Ultimately that leads to the question of where did life start and where did it originate. And we could argue fairly effectively that maybe there is a link with the origin of life in our work."

Another interesting aspect to the research, said Muehlenbachs, is that the rock type they studied is the same as on the surface of Mars. "Martian rocks would also have glass that would retain a record of life activity-we could learn a lot from them as well."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Interdisciplinary Research:

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>