Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery offers clues to origin of life

23.04.2004


A new discovery of microbial activity in 3.5 billion-year-old volcanic rock and one of earth’s earliest signs of geological existence sheds new light on the antiquity of life, says University of Alberta researchers who are part of a team that made the groundbreaking finding.



"People have been looking for signs of early bacteria for the last 50 years," said Dr. Karlis Muehlenbachs, from the U of A’s Faculty of Science and an author on the paper just published in the journal Science. "A variety have claimed they’ve seen it and subsequently been challenged as being flawed. We are suggesting that we have clear evidence of life prospering in an environment where no one else has bothered to look."

The research team, also made up of Drs. Harald Furnes from the University of Bergen in Norway, Neil Banerjee from the U of A, Hubert Staudigel from the University of California and Maarten de Wit from the University of Cape Town, studied samples of pillow lava taken from the Mesoarchean Barberton Greenstone Belt in South Africa. They found mineralized tubes that were formed in the pillow lava, suggesting microbes colonized basaltic glass of the early oceanic crust, much in the same way as they do modern volcanic glass.


This evidence of life in the basaltic glass on the seafloor comes in the form of textures produced by microbes as they dissolve the glass, said Banerjee. "These textures include channels or tubes produced by the microbe as it tunnels through the glass, possibly using the glass as a source of nutrients," he said. "We have also found traces of carbon, nitrogen, phosphorous and potassium-all essential to life-as well as DNA associated with the microbial alternation textures in the recent basaltic glass samples."

The team then compared its $3.5 billion-year-old samples to the modern pillow lava on the seafloor using several sophisticated tests and was able to find much evidence of life. To date the microbial activity, the team compared the relationship between the tubular structures and the metamorphic mineral growth.

"On the microscopic level, we see that during metamorphism, the new minerals cross cut the preserved biological features," said Muehlenbachs. "This means that the biological features pre date the metamorphism, leading to the conclusion that the microbes were attacking the glass 3.48 billion years ago-very soon after the glass chilled and lasting a few million years, perhaps until the usual geological processes buried and cooked them."

Despite challenges to previous research claiming evidence of life activity, this research team is certain its evidence is solid. "In other discoveries, there has been much discussion and argument about the rock type and where it came from," said Muehlenbachs. "Everyone agrees our rock is from the sea floor-that’s a sure thing. Ultimately that leads to the question of where did life start and where did it originate. And we could argue fairly effectively that maybe there is a link with the origin of life in our work."

Another interesting aspect to the research, said Muehlenbachs, is that the rock type they studied is the same as on the surface of Mars. "Martian rocks would also have glass that would retain a record of life activity-we could learn a lot from them as well."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca/

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>