Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning video captures water, oil, mixing

08.03.2004


When water meets oil, it’s not like when Harry meets Sally. It’s more like a tornado. Washington University mechanical engineer Amy Shen, Ph.D., and student collaborators have made an award-winning video that shows (from left) canola oil, fuel treatment and an oil treatment mixing with water.


Shen, Roland and Alexander, the team that brought home the APS award


It looks like a tornado

A team consisting of an art student and mechanical engineers at Washington University in St. Louis has made an award-winning movie that captures for the first time the fluid mechanics phenomenon of two things that classically don’t mix, doing just that.

Amy Shen, Ph.D., assistant professor of mechanical engineering, her graduate student William Alexander and Arts & Sciences art major Sarah Roland, have photographed three different oils atop a layer of water and the consequence of what happens when water and oil are forced to react through the spin of a magnetic stir bar.



Guess what? It looks just like a tornado. Double click on the images and take a look: http://mesun4.wustl.edu/ME/faculty/aqshen/news.html

The three-minute video, set to the rock music of Soundgarden, catches canola oil, STP oil and STP oil additive doing what they don’t confess, and is so visually appealing that it won the Gallery of Fluid Motion Award at the American Physical Society’s (APS) annual meeting in November, 2003 in East Rutherford, N.J. APS holds the competition, which can be either a poster or a video, annually; Shen and her collaborators were one of 11 teams out of 88 who competed to win an award. Shen’s results will be published later in 2004 in the journal Physics of Fluids.

She recruited Roland to the project when she and two other Washington University faculty members purchased a photron PCI 128 digital high speed camera that shoots 1,000 frames per second (at 1,024 by 1,248 resolution) compared with the 30 frames per second of a typical digital camera.

"I wanted to have someone work with us who was really proficient with a camera and would value the beauty of the action," Shen said. "Sarah was invaluable."

Shen’s specialty is fluid dynamics of complex fluids, an interdisciplinary area involved in many natural and synthetic processes from hand-held sensing devices to automobiles, to biomedical equipment. The transport of fluid and heat occurs everywhere, for instance, in the environment and all living organisms. Fluids are either Newtonian — their viscosity is constant, despite perturbation — or non-Newtonian — their viscosity changes and is less easy to predict. Canola oil is Newtonian and the STP products are non-Newtonian.

The three different oils all produced different vortices, or funnels. Canola oil is the smoothest, characterized by satellite droplets, and looking like a classic tornado about to touch down; STP fuel treatment is a little rougher with irregular satellites; and the oil treatment is the most inelastic, looking like the dissolving of a funnel cloud.

"When you see the movie, everything makes sense," Shen said. "The purpose of the competition is to illustrate a fluid motion that shows originality and ability to convey the fundamental fluid transport phenomenon. The most common reaction we got was: ’I should have done that.’ I think it’s a nice educational demonstration of fundamental research with up-to-date technology."

Tony Fitzpatrick | WUSTL
Further information:
http://news-info.wustl.edu/tips/page/normal/637.html
http://mesun4.wustl.edu/ME/faculty/aqshen/news.html

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>