Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings of Novel Nanoproperties in Selenium Produced By Bacteria Open New Area of Exploration

11.02.2004


Findings Could Lead to Faster Electronic Devices

Working at the nexus of biology and nanotechnology, a researcher and an alumnus from Rensselaer Polytechnic Institute have released findings that could lead to the tailoring of bacterial processes for a host of smaller, faster semiconductors and other electronic devices.

Pulickel Ajayan, professor of materials science and engineering at Rensselaer, and geobiologist Ronald Oremland reported that three different kinds of common bacteria “grow” the element selenium in the form of uniform nanospheres. The nanoscopic balls exhibit vastly different properties than selenium that is found as a trace mineral in topsoil.



Selenium is used in photovoltaic and photoconductive technologies. It is incorporated in many electronic and technical applications, such as semiconductors, photocopiers, and photocells.

The findings of Ajayan and Oremland were published in the journal Applied and Environmental Microbiology (an American Society of Microbiology publication) in January. A summary of the research also was featured the same month in the “Editor’s Choice” section of Science magazine.

Oremland, a senior scientist at the U.S. Geological Survey in Menlo Park, Calif., and a 1968 Rensselaer biology graduate, has been studying anaerobic bacteria that respire, or “breathe,” soluble salts, or “oxyanions,” of toxic elements, such as selenium and arsenic. He recently discovered that some of these microbes form distinctive selenium nanoscopic balls, each of which measure 300 nanometers in diameter on the outside of their cell envelopes.

Knowing little about what kinds of properties selenium exhibits on the nanoscale level, Oremland turned to his alma mater to enlist the help of Ajayan, an internationally known nanomaterials expert.

“I was interested in finding out whether this type of selenium would be useful. As a biologist, I am not familiar with the various electrical, optical, and other properties of nanomaterials,” said Oremland, the paper’s lead author.

Ajayan and Seamus Curran, a postdoctoral fellow working at the Nanoscale Science and Engineering Center at Rensselaer at the time, found that the nanospheres exhibited enhanced optical and semiconducting properties. They also discovered that the nanospheres grown on each of the three bacteria studied were different from each other and fundamentally different from amorphous selenium particles formed by chemical means.

“Surprisingly, we found different bacteria produce spheres with different arrangements of the selenium atoms and hence different optical properties,” says Ajayan. “Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.”

The research could lead to the production of nanospheres, nanowires, nanorods, and other nanostructures with precise atomic arrangements for smaller, faster semiconductors and other electronic devices.

“This is an excellent example of how Rensselaer researchers are crossing over disciplines in unique collaborations that are opening up new avenues in research and discovery,” said Rensselaer Provost Bud Peterson.

Other collaborators include researchers from University of Guelph in Canada, the Naval Surface Warfare Center in Virginia, and New Mexico State University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | RPI
Further information:
http://www.rpi.edu/web/News/press_releases/2004/nanosphere.htm

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>