Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Findings of Novel Nanoproperties in Selenium Produced By Bacteria Open New Area of Exploration


Findings Could Lead to Faster Electronic Devices

Working at the nexus of biology and nanotechnology, a researcher and an alumnus from Rensselaer Polytechnic Institute have released findings that could lead to the tailoring of bacterial processes for a host of smaller, faster semiconductors and other electronic devices.

Pulickel Ajayan, professor of materials science and engineering at Rensselaer, and geobiologist Ronald Oremland reported that three different kinds of common bacteria “grow” the element selenium in the form of uniform nanospheres. The nanoscopic balls exhibit vastly different properties than selenium that is found as a trace mineral in topsoil.

Selenium is used in photovoltaic and photoconductive technologies. It is incorporated in many electronic and technical applications, such as semiconductors, photocopiers, and photocells.

The findings of Ajayan and Oremland were published in the journal Applied and Environmental Microbiology (an American Society of Microbiology publication) in January. A summary of the research also was featured the same month in the “Editor’s Choice” section of Science magazine.

Oremland, a senior scientist at the U.S. Geological Survey in Menlo Park, Calif., and a 1968 Rensselaer biology graduate, has been studying anaerobic bacteria that respire, or “breathe,” soluble salts, or “oxyanions,” of toxic elements, such as selenium and arsenic. He recently discovered that some of these microbes form distinctive selenium nanoscopic balls, each of which measure 300 nanometers in diameter on the outside of their cell envelopes.

Knowing little about what kinds of properties selenium exhibits on the nanoscale level, Oremland turned to his alma mater to enlist the help of Ajayan, an internationally known nanomaterials expert.

“I was interested in finding out whether this type of selenium would be useful. As a biologist, I am not familiar with the various electrical, optical, and other properties of nanomaterials,” said Oremland, the paper’s lead author.

Ajayan and Seamus Curran, a postdoctoral fellow working at the Nanoscale Science and Engineering Center at Rensselaer at the time, found that the nanospheres exhibited enhanced optical and semiconducting properties. They also discovered that the nanospheres grown on each of the three bacteria studied were different from each other and fundamentally different from amorphous selenium particles formed by chemical means.

“Surprisingly, we found different bacteria produce spheres with different arrangements of the selenium atoms and hence different optical properties,” says Ajayan. “Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.”

The research could lead to the production of nanospheres, nanowires, nanorods, and other nanostructures with precise atomic arrangements for smaller, faster semiconductors and other electronic devices.

“This is an excellent example of how Rensselaer researchers are crossing over disciplines in unique collaborations that are opening up new avenues in research and discovery,” said Rensselaer Provost Bud Peterson.

Other collaborators include researchers from University of Guelph in Canada, the Naval Surface Warfare Center in Virginia, and New Mexico State University.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | RPI
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>