Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dazzling new light source opens at Stanford Synchrotron Radiation Laboratory

02.02.2004


“The light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL). The start up of SSRL’s new synchrotron light facility, SPEAR3, guarantees a world-class program in x-ray science for years to come,” said U.S. Secretary of Energy Spencer Abraham. “This is the first time the Department of Energy and the National Institutes of Health have joined in funding an accelerator research facility. I expect this to be a long and productive collaboration whose impact will be truly far-reaching, generating new knowledge and benefits to humanity.”

Some 2,000 scientists from around the country will use SPEAR3’s extremely bright x-ray light each year to illuminate the long-kept secrets of materials, chemical and biological matter.

SPEAR3, was formally opened at a dedication ceremony at the Stanford Linear Accelerator Center (SLAC) on January 29. SPEAR3 incorporates the latest technology—much of it pioneered at SSRL and SLAC—to make it competitive with the best synchrotron sources in the world.



Synchrotron light has revolutionized our view into the sub-microscopic world and has contributed to major innovations in fields including solid-state physics, materials science, environmental sciences, structural biology and chemistry. Synchrotron light is created when electrons traveling the speed of light take a curved path around a storage ring—emitting electromagnetic light in x-ray through infrared wavelengths. The resulting light beam has characteristics that make it ideal for revealing the intricate architecture and utility of many kinds of matter.

"This facility will be crucial to advancing the field of structural biology, which is growing in importance to the NIH mission, by enabling cutting-edge targeted drug design projects and major efforts such as the Protein Structure Initiative and the Structural Biology arm of the NIH Roadmap," said Dr. Elias Zerhouni, Director of the National Institutes of Health. "From its very genesis as a joint project between NIH and DOE, this new facility exemplifies the collaborative nature of science and the productive cross-fertilization between biological and physical disciplines."

“SPEAR3’s brilliant x-ray beams provide the ability to study smaller objects at higher resolution,” said SSRL physicist John Arthur. “In many cases the greater brightness at SPEAR3 will also enable researchers to take their data faster, do more difficult experiments, and use smaller samples of material.”

Thirty years ago, SSRL was among the first laboratories in the world to use synchrotron produced x-rays for studying matter at atomic and molecular scales, and the first to offer beam time to a broad user community of scientists from academic, industry and government labs (based on peer-reviewed proposals). The original SPEAR ring, built for particle physics programs at SLAC, yielded two Nobel prizes as well as fertile ground for innovating synchrotron techniques and making important discoveries. SPEAR3 is a complete rebuild and upgrade of the SPEAR2 ring.

The new ring has the capacity to easily add 8 to 10 more beam lines with associated experimental stations. A $14.2 million gift from the Gordon and Betty Moore Foundation to the California Institute of Technology was announced on January 28, which will allow scientists at Caltech and Stanford University to collaborate on the building of a designated beam line at SPEAR3 for structural molecular biology research. The exceptional quality and brightness of SPEAR3’s x-ray light is perfectly suited to studying complicated biological systems.

The first electron beams circulated in the new SPEAR3 ring in mid-December 2003 and the first experiments are scheduled to begin in March.

“SPEAR3 is a remarkable resource that will enable state-of-the-art science in numerous fields,” said SSRL Director and Stanford Professor Keith Hodgson. “The $58 million project was completed on time and on budget. I thank the people whose extraordinary teamwork made the project successful. In a remarkable accomplishment, the old accelerator was dismantled, a new tunnel floor poured, SPEAR3 installed and commissioned, and users back online—all within a mere 11 months.”

Neil Calder | DOE / SLAC
Further information:
http://www.slac.stanford.edu/slac/media-info/20040130/index.html

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>