Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dazzling new light source opens at Stanford Synchrotron Radiation Laboratory

02.02.2004


“The light shines brilliantly these days at the Stanford Synchrotron Radiation Laboratory (SSRL). The start up of SSRL’s new synchrotron light facility, SPEAR3, guarantees a world-class program in x-ray science for years to come,” said U.S. Secretary of Energy Spencer Abraham. “This is the first time the Department of Energy and the National Institutes of Health have joined in funding an accelerator research facility. I expect this to be a long and productive collaboration whose impact will be truly far-reaching, generating new knowledge and benefits to humanity.”

Some 2,000 scientists from around the country will use SPEAR3’s extremely bright x-ray light each year to illuminate the long-kept secrets of materials, chemical and biological matter.

SPEAR3, was formally opened at a dedication ceremony at the Stanford Linear Accelerator Center (SLAC) on January 29. SPEAR3 incorporates the latest technology—much of it pioneered at SSRL and SLAC—to make it competitive with the best synchrotron sources in the world.



Synchrotron light has revolutionized our view into the sub-microscopic world and has contributed to major innovations in fields including solid-state physics, materials science, environmental sciences, structural biology and chemistry. Synchrotron light is created when electrons traveling the speed of light take a curved path around a storage ring—emitting electromagnetic light in x-ray through infrared wavelengths. The resulting light beam has characteristics that make it ideal for revealing the intricate architecture and utility of many kinds of matter.

"This facility will be crucial to advancing the field of structural biology, which is growing in importance to the NIH mission, by enabling cutting-edge targeted drug design projects and major efforts such as the Protein Structure Initiative and the Structural Biology arm of the NIH Roadmap," said Dr. Elias Zerhouni, Director of the National Institutes of Health. "From its very genesis as a joint project between NIH and DOE, this new facility exemplifies the collaborative nature of science and the productive cross-fertilization between biological and physical disciplines."

“SPEAR3’s brilliant x-ray beams provide the ability to study smaller objects at higher resolution,” said SSRL physicist John Arthur. “In many cases the greater brightness at SPEAR3 will also enable researchers to take their data faster, do more difficult experiments, and use smaller samples of material.”

Thirty years ago, SSRL was among the first laboratories in the world to use synchrotron produced x-rays for studying matter at atomic and molecular scales, and the first to offer beam time to a broad user community of scientists from academic, industry and government labs (based on peer-reviewed proposals). The original SPEAR ring, built for particle physics programs at SLAC, yielded two Nobel prizes as well as fertile ground for innovating synchrotron techniques and making important discoveries. SPEAR3 is a complete rebuild and upgrade of the SPEAR2 ring.

The new ring has the capacity to easily add 8 to 10 more beam lines with associated experimental stations. A $14.2 million gift from the Gordon and Betty Moore Foundation to the California Institute of Technology was announced on January 28, which will allow scientists at Caltech and Stanford University to collaborate on the building of a designated beam line at SPEAR3 for structural molecular biology research. The exceptional quality and brightness of SPEAR3’s x-ray light is perfectly suited to studying complicated biological systems.

The first electron beams circulated in the new SPEAR3 ring in mid-December 2003 and the first experiments are scheduled to begin in March.

“SPEAR3 is a remarkable resource that will enable state-of-the-art science in numerous fields,” said SSRL Director and Stanford Professor Keith Hodgson. “The $58 million project was completed on time and on budget. I thank the people whose extraordinary teamwork made the project successful. In a remarkable accomplishment, the old accelerator was dismantled, a new tunnel floor poured, SPEAR3 installed and commissioned, and users back online—all within a mere 11 months.”

Neil Calder | DOE / SLAC
Further information:
http://www.slac.stanford.edu/slac/media-info/20040130/index.html

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>