Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists study mad cow-type diseases

26.01.2004


Using math and physics to investigate mad cow disease (bovine spongiform encephalopathy or BSE) and similar diseases caused by infectious proteins called prions is the aim of research by physicists Daniel Cox, Rajiv Singh and colleagues at UC Davis. The researchers are using mathematical models to study issues such as the incubation time, prion "strains" and treatment or detection strategies.



Diseases such as BSE in cattle, Creutzfeld-Jakob disease in humans and chronic wasting disease in deer are all apparently caused by prions, misfolded versions of a normal brain protein. Similar diseases have been found in other animals including cats, mink and rodents, and prion-type proteins have even been found in yeast.

Prions seem to cause disease by triggering normal versions of the same protein to spontaneously fold up the wrong way, creating growing mats and tangles.


The UC Davis researchers have developed mathematical models to simulate this process. The models reproduce how prions collect around an original "seed" prion, and how these clumps subsequently break up and spread around the brain and nervous system.

Predictions from the models compare well with the course of actual disease in both small and large animals, Cox said.

Cox and colleagues are now using the model system to investigate the minimal requirements for prions to cause disease; how "strains" of prions can exist and what effect they have; and potential treatment strategies.


Media contact: * Daniel Cox, Physics, 530-752-1789, cox@physics.ucdavis.edu (Cox is best contacted by email.)

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>