Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One type of carbon so resilient it skews carbon cycle calculations

23.01.2004


Scientists interested in the Earth’s carbon cycle – something that must be understood to assess the ongoing effects of carbon dioxide created by human actions, such as driving cars – have a new problem. They need to adjust various calculations because one component, graphitic black carbon, similar to the material found in pencil lead, turns out to be so tough.



In a letter in today’s issue of Nature, researchers say that graphitic black carbon is created as sedimentary rocks undergo metamorphism – unlike forms of combustion-derived black carbon such as soot, charcoal and other debris that’s left when biomass such as forests or fossil fuels don’t burn completely. Eroding from rocks on land, graphitic black carbon appears to be one of the only kinds of carbon that resists conversion to other forms of carbon, such as combining with oxygen to form carbon dioxide, as it cycles between land, atmosphere and oceans.

"Carbon is generally considered to pass fairly freely between reservoirs, or ’boxes,’ of the carbon cycle," says lead author Angela Dickens, a doctoral student in chemistry and oceanography at the University of Washington. "The carbon stays in one box for a variable amount of time – for hundreds of years in trees, a few days in a bug, thousands of years as organic carbon dissolved in the world’s oceans and such, but not generally staying more than a few thousand years in any one form before being converted into a different form.


"Of course carbon in rocks cycles on a much longer time scale – millions of years – but it has been assumed that once that carbon weathers out of rocks it will enter a different box, perhaps becoming atmospheric carbon dioxide or part of the biomass. This isn’t the case for graphitic black carbon," Dickens says. "It’s tough stuff."

This gives it a chance to become so old its exact age can’t even be determined using radiocarbon dating methods, meaning it’s at least 50,000 years old and, Dickens suspects, much, much older.

This really old graphitic black carbon, referred to as fossil graphitic black carbon, was inseparable from combustion-derived black carbon in marine sediments until co-author Yves Gélinas of Concordia University in Montreal developed a new technique in recent years. One implication of this latest work is that where fossil graphitic black carbon is present with combustion-derived black carbon or other organic carbon, it skews the radiocarbon data scientists have been using to understand the carbon cycle.

Although fossil graphitic black carbon makes up only roughly 0.5 percent of the total organic carbon and perhaps 10 percent of the total black carbon buried in most marine sediments, the "widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments," the scientists write in the letter to Nature.

For example, in the equatorial Pacific Ocean the scientists estimate that, of published results, somewhere between 20 percent and 60 percent of the open-ocean black carbon fluxes might actually consist of fossil graphitic black carbon.

The authors also say their results imply that a significant fraction of sedimentary organic carbon in marine sediments is fossil graphitic black carbon. That changes, for example, the age of organic carbon from Washington coastal sediments by 75 to 530 years and makes scientists believe organic carbon stays longer than it actually does in intermediate reservoirs, such as soil.

"These interpretations are important for understanding the time scales of carbon cycling in the environment. For example, for understanding whether carbon in a watershed is very rapidly eroded, carried to the oceans and buried – implying that this system is a carbon sink – or if it sits around in soils for a very long time so that presumably most of it is oxidized back to carbon dioxide before what little remains erodes away," Dickens says.


The work was supported by Lawrence Livermore National Laboratory, where the radiocarbon analyses were done; the National Science Foundation; the Natural Sciences and Engineering Research Council of Canada; and Quebec’s Fonds Quebecois de la Recherche sur la Nature et les Technologies. Other co-authors are Caroline Masiello of the University of California, Santa Barbara, and California Institute of Technology in Pasadena, Stuart Wakeham of the Skidaway Institute of Oceanography in Savannah, Ga., and the late John Hedges of the University of Washington.

For more information: Dickens, dickensa@u.washington.edu, 206-221-6747
Gélinas, ygelinas@alcor.concordia.ca, 514-848-2424 x3337
Masiello, masiello@gps.caltech.edu, 626-395-6496

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>