Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One type of carbon so resilient it skews carbon cycle calculations

23.01.2004


Scientists interested in the Earth’s carbon cycle – something that must be understood to assess the ongoing effects of carbon dioxide created by human actions, such as driving cars – have a new problem. They need to adjust various calculations because one component, graphitic black carbon, similar to the material found in pencil lead, turns out to be so tough.



In a letter in today’s issue of Nature, researchers say that graphitic black carbon is created as sedimentary rocks undergo metamorphism – unlike forms of combustion-derived black carbon such as soot, charcoal and other debris that’s left when biomass such as forests or fossil fuels don’t burn completely. Eroding from rocks on land, graphitic black carbon appears to be one of the only kinds of carbon that resists conversion to other forms of carbon, such as combining with oxygen to form carbon dioxide, as it cycles between land, atmosphere and oceans.

"Carbon is generally considered to pass fairly freely between reservoirs, or ’boxes,’ of the carbon cycle," says lead author Angela Dickens, a doctoral student in chemistry and oceanography at the University of Washington. "The carbon stays in one box for a variable amount of time – for hundreds of years in trees, a few days in a bug, thousands of years as organic carbon dissolved in the world’s oceans and such, but not generally staying more than a few thousand years in any one form before being converted into a different form.


"Of course carbon in rocks cycles on a much longer time scale – millions of years – but it has been assumed that once that carbon weathers out of rocks it will enter a different box, perhaps becoming atmospheric carbon dioxide or part of the biomass. This isn’t the case for graphitic black carbon," Dickens says. "It’s tough stuff."

This gives it a chance to become so old its exact age can’t even be determined using radiocarbon dating methods, meaning it’s at least 50,000 years old and, Dickens suspects, much, much older.

This really old graphitic black carbon, referred to as fossil graphitic black carbon, was inseparable from combustion-derived black carbon in marine sediments until co-author Yves Gélinas of Concordia University in Montreal developed a new technique in recent years. One implication of this latest work is that where fossil graphitic black carbon is present with combustion-derived black carbon or other organic carbon, it skews the radiocarbon data scientists have been using to understand the carbon cycle.

Although fossil graphitic black carbon makes up only roughly 0.5 percent of the total organic carbon and perhaps 10 percent of the total black carbon buried in most marine sediments, the "widespread presence of fossil graphitic black carbon in sediments has therefore probably led to significant overestimates of burial of combustion-derived black carbon in marine sediments," the scientists write in the letter to Nature.

For example, in the equatorial Pacific Ocean the scientists estimate that, of published results, somewhere between 20 percent and 60 percent of the open-ocean black carbon fluxes might actually consist of fossil graphitic black carbon.

The authors also say their results imply that a significant fraction of sedimentary organic carbon in marine sediments is fossil graphitic black carbon. That changes, for example, the age of organic carbon from Washington coastal sediments by 75 to 530 years and makes scientists believe organic carbon stays longer than it actually does in intermediate reservoirs, such as soil.

"These interpretations are important for understanding the time scales of carbon cycling in the environment. For example, for understanding whether carbon in a watershed is very rapidly eroded, carried to the oceans and buried – implying that this system is a carbon sink – or if it sits around in soils for a very long time so that presumably most of it is oxidized back to carbon dioxide before what little remains erodes away," Dickens says.


The work was supported by Lawrence Livermore National Laboratory, where the radiocarbon analyses were done; the National Science Foundation; the Natural Sciences and Engineering Research Council of Canada; and Quebec’s Fonds Quebecois de la Recherche sur la Nature et les Technologies. Other co-authors are Caroline Masiello of the University of California, Santa Barbara, and California Institute of Technology in Pasadena, Stuart Wakeham of the Skidaway Institute of Oceanography in Savannah, Ga., and the late John Hedges of the University of Washington.

For more information: Dickens, dickensa@u.washington.edu, 206-221-6747
Gélinas, ygelinas@alcor.concordia.ca, 514-848-2424 x3337
Masiello, masiello@gps.caltech.edu, 626-395-6496

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>