Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


OHSU-led research examines role of copper, iron in diseases


Interdisciplinary project targets disruptions of metal ion balance in human cells

For years, scientists have worked to pinpoint what causes the short-circuit of copper metabolism in human cells that leads to two deadly neurodegenerative disorders known as Wilson’s disease and Menkes disease.

Now, a research team led by scientists at Oregon Health & Science University is working full time at the molecular level of medicine to find out.

These "metallobiochemists" are part of an interdisciplinary research program that has become one of the first in the nation to focus on understanding metal homeostasis in human cells and its disruption not just in Wilson’s and Menkes diseases, but also diseases such as hemochromatosis, Lou Gehrig’s disease and even mad cow disease, all of which may be linked to errors in metal metabolism.

The research explores molecular mechanisms regulating primarily copper and iron concentrations in normal and diseased cells. The metals are essential to a wide range of biological processes, and aberrations in their metabolism lead to life-threatening and disabling disorders.

Svetlana Lutsenko, Ph.D., associate professor of biochemistry and molecular biology in the OHSU School of Medicine, is leading the multifaceted project titled "Metal Ion Regulation in Human Cells." The effort unites several research laboratories studying the distribution of metals at the molecular, cellular and tissue levels, including teams from OHSU’s schools of medicine, science and engineering, and dentistry, the University of Illinois at Chicago and the California Institute of Technology at Pasadena.

"It’s very important to understand the regulation of metals in cells," Lutsenko said. "It’s a fairly new area of research we really wanted to develop. We’re trying to dissect normal metal metabolism and to understand the effect of metals on disease progression."

Vital to the project’s success is the "metal ion core," a collection of precision lab equipment that includes a mass spectrometer to study metal-induced modifications of proteins; an atomic absorption spectrometer to measure metal concentrations in cell and tissue samples; and a confocal microscope to look at protein "trafficking" within the cell and at distribution of genes involved in metal metabolism in various tissues.

The core "brings us to a new level of accuracy, sophistication, and sensitivity of measurements," Lutsenko said.

Copper, which the human body requires for embryo development, connective tissue formation, temperature control and nerve cell function, is a major focus of the project. The research team is tracking copper movement at three levels: uptake into the cell, which is mediated by a newly discovered protein called hCtrl; delivery to specific copper-dependent molecules within the cell by "metallochaperone" proteins known as Atox1 and hCCS; and removal from the cell by proteins called copper-transporting ATPases.

Of particular interest to the researchers is the chaperone protein Atox1. Researchers hope to learn how Atox1 and the copper-transporting ATPase find each other in a cell, how copper is transferred from Atox1 to disease proteins, which are mutated forms of ATPases, and determine the specific molecular consequences of the copper transfer.

Ninian Blackburn, Ph.D., professor of environmental and biomolecular systems at OHSU’s OGI School of Science & Engineering and a metal ion project investigator, is studying the interaction between the chaperones and target proteins, a system that, under normal conditions, ensures the concentration of free copper is kept at a negligible level.

"There are literally tens of thousands of proteins in a cell," Blackburn said. "How does the cell know where to place the metal in this huge sea of proteins? That’s what the chaperones do. They’re like taxis that collect the metal from the uptake protein at the cell membrane and take it to right target protein. What we’re trying to do is understand how they know where to go, how they actually carry out this feat."

Researchers also will study the structure and function of the copper-transporting ATPases, which are central to the copper metabolism and, when mutated, are associated with Menkes and Wilson’s diseases.

Menkes disease occurs when dietary copper is trapped in intestinal cells and is abnormally low in tissues. According to the National Institute of Neurological Disorders and Stroke, Menkes infants, mostly males, are born prematurely and suffer from stunted development, as well as seizures, failure to thrive, low body temperature, and kinky, colorless and fragile hair. There is no cure for the disease and it is usually fatal by age 10.

Wilson’s disease is caused when excessive copper accumulates in the body, leading to liver disease in about 40 percent of patients as well as neurological problems, including tremors, rigidity, drooling, difficulty with speech, abrupt personality change, and unusual behavior associated with neurosis and psychosis. If untreated, it is generally fatal by age 30.

Iron metabolism and its link to hemochromatosis is being studied as well by OHSU investigators. An inherited disease, hemochromatosis occurs when the body absorbs and stores too much iron, allowing it to build up in the liver, heart and pancreas and triggering their failure. Caroline Enns, Ph.D., professor of cell and developmental biology in the OHSU School of Medicine, is tracking the defective gene that causes the disease.

"There is a very tight link between copper and iron metabolism," Lutsenko said. "Studying the systems in parallel is mutually beneficial. The experimental approaches will be very similar and we expect to discover interesting connections."

The metal ion project began earlier this year following grants from the Oregon Opportunity medical research funding effort and the National Institute of General Medical Sciences. It is the product of a National Institutes of Health program called "Metals in Medicine" that promotes studies on the ways organisms control metal ion transition in cells, and the roles that metals play on cellular regulation and cell-to-cell signaling.

The "Metals in Medicine" program is among the priorities of the United States Public Health Service’s "Healthy People 2010" initiative, a set of health objectives for the nation to achieve over the first decade of the new century.

"There’s definitely an increased awareness of the importance of metal ions in the general medical research community," Blackburn said. "We have had a lot of interest from colleagues who realize the importance of these metals."

Menkes and Wilson’s diseases are just two examples of diseases that are linked to aberrant copper metabolism, he said.

"Anemias are iron deficiencies. The ability of cancers to generate vascular systems has been linked to the roles of various metals complexes," Blackburn explained. "So there are growing numbers of diseases that are known or suspected of being associated with deficiencies in these metal transport processes."

He added that the work of the metal ion research group involves "really getting down to the nitty-gritty within the cell."

"As scientists these days, in order to really understand disease, we have to understand the cell functions at the molecular level," he said. Proteins "are like these little molecular machines that handle all this complex chemistry that goes on in the cell

Jonathan Modie | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>