Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Salk news: Understanding organ placement

09.01.2004


Salk study uncovers new information about organ placement



A Salk Institute team of biologists, mathematicians, and physicists has uncovered a novel paradigm for cell communication that provides new insights into the complex question of how the body determines where organs are placed.

The study focused on a fundamental question: how the body tells left from right. Although humans look fairly symmetric on the outside, their inner organs are placed quite asymmetrically; for example, the heart points to the left and the liver lies to the right side.


"We know that in the phase of development, there is a genetic cascade that leads to the proper placement of organs. If that cascade is disrupted, the results can lead to major problems or be fatal," said Salk Professor Juan Carlos Izpisúa Belmonte, who published the findings in the January 8 issue of Nature. Still, scientists did not have a clear understanding of what triggers the genetic cascade that defines organ placement. Izpisúa Belmonte’s group focused on the activity of the Notch pathway, an important player during embryo development and also during tumorigenesis, and a key factor for proper left-right asymmetry, as the same group and others had learned earlier this year.

"We knew that Notch activity was necessary for the normal, left-sided expression, but we were clueless as to what was activating Notch preferentially on the left side," said Angel Raya, lead author of the paper. "We examined several factors known to participate early in the establishment of the left-right axis, but none was responsible for what we were seeing."

Izpisúa Belmonte and his team characterized a highly complex chain of events leading to Notch activation, and resorted to mathematics to model the dynamics of this process. The model allowed the team to perform thousands of experiments in the computer (simulations), and pinpoint the factors most likely to regulate Notch activity in the specific fashion seen in the embryo.

"The model pointed in the direction of extracellular calcium, and we were absolutely thrilled when we visualized that, indeed, extracellular calcium accumulated normally on the left side of the embryo. The mathematical model that we developed saved us years of bench work and led to new insights about a biological problem," said Izpisúa Belmonte. "We are very excited about this multidisciplinary approach to biology, and we believe that collaborative approaches between biologists, mathematicians, and physicists working together will lead to long-term breakthroughs in biological research."


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent, nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. The Institute was founded in 1960 by Jonas Salk, M.D., with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>