Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont-led scientists unveil key nanotechnology discovery with use of DNA

02.12.2003


Sorting carbon nanotubes provides significant step in advancing nano-electronics applications



A collaborative group of DuPont-led scientists have discovered an innovative way to advance electronics applications through the use of DNA that sorts carbon nanotubes.

This research in the emerging field of nanotechnology appears in the current issue of the journal Science, which is published by the AAAS – the world’s largest general scientific organization. The research paper is titled "Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly."


Carbon nanotubes possess excellent electrical properties that make them potential building blocks in a broad range of nanotechnology-related electronic applications, including highly sensitive medical diagnostic devices and mini-transistors more than 100 times tinier than those found in today’s microchips. When they are fabricated, however, carbon nanotubes of different electronic types randomly clump together, deterring consistent conductivity. The ability to sort and assemble carbon nanotubes allows for uniform conductivity – enabling the applications to be realized.

Initially, DuPont Central Research & Development scientists found that single-stranded DNA strongly interacts with carbon nanotubes to form a stable DNA-carbon nanotube hybrid that effectively disperses carbon nanotubes in an aqueous solution.

As a follow-up to that initial work, a multidisciplinary team of scientists from DuPont, the Massachusetts Institute for Technology (MIT) and the University of Illinois worked together to discover a new method for separating carbon nanotubes using single stranded DNA and anion-exchange chromatography. By screening a library of oligonucleotides, the team found that a particular sequence of single stranded DNA self-assembles into a helical structure around individual carbon nanotubes. Since carbon nanotube-DNA hybrids have different electrostatic properties that depend on the nanotubes’ diameter and electronic properties, they can be separated and sorted using anion exchange chromatography. The technique can be used to separate metallic carbon nanotubes from semiconducting carbon nanotubes, both which are created during nanotube production. The technique also can sort semiconducting carbon nanotubes by diameters, an important element in nanoelectronic applications. The collaborative work is further detailed in the current edition of Science.

"Wrapping of carbon nanotubes by single-stranded DNA was found to be sequence-dependent," said DuPont Central Research & Development scientist Ming Zheng. "This outstanding collaborative effort is a good example how researchers from both industry and academic institutions can work together in a multidisciplinary approach to further advance this emerging technology."

DuPont Central Research & Development scientists who contributed to the research were Ming Zheng, Anand Jagota, Bruce A. Diner, Robert S. McLean, G. Bibiana Onoa, Ellen D. Semke and Dennis J. Walls. University of Illinois contributors were Michael S. Strano, Paul Barone, and Monica Usrey. MIT contributors were Adelina P. Santos, Grace Chou, Mildred S. Dresselhaus, and Georgii G. Samsonidze.


DuPont is a science company. Founded in 1802, DuPont puts science to work by solving problems and creating solutions that make people’s lives better, safer and easier. Operating in more than 70 countries, the company offers a wide range of products and services to markets including agriculture, nutrition, electronics, communications, safety and protection, home and construction, transportation and apparel.

Anthony Farina | EurekAlert!
Further information:
http://www.dupont.com/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>