Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule by Molecule, NC State Scientists Design a New Transistor

19.11.2003


When amazing new computers and other electronic devices emerge, they will have been conceived and incubated in university laboratories like that of Dr. Chris Gorman, professor of chemistry at North Carolina State University. There, the scientist and his multidisciplinary team are working to build, molecule by molecule, a nanoscale transistor.


A patterned collection of molecules
created and visualized using scanning tunneling microscopy like that used to help create the nanoscale transistor.
Data collected by R. Fuierer



That’s an electronic switch so small it can only be seen with a high-tech device called a scanning tunneling microscope. And if you go to the library to find the “how-to” book, says Gorman, “most of the pages will be blank, because nobody yet knows how to do it.”

And that, for the chemists, engineers and students engaged in the project, is what makes their painstaking, pioneering research so satisfying. If they can design and construct a nanoscale transistor, Gorman, his colleagues and his students will have filled in many of the blank pages in the how-to book. The field is so new, the research avenues so unexplored, that each experiment, each variation, helps write that book.


Their work is guided by the “bottom-up” approach to building something, says Gorman. “Most things are built using ‘top-down’ methods,” he explains, “where you take a chunk of metal, stone or wood and carve off the material you don’t want, until you have an I-beam or a two-by-four. In contrast, we’re interested in assembling molecules, and building a functioning transistor – with as few of the molecules as possible.”

A persuasive advocate of multidisciplinary research, Gorman is working with NC State colleagues Dr. Daniel L. Feldheim, associate professor of chemistry, and Dr. Gregory N. Parsons, associate professor of chemical engineering, to combine this bottom-up approach with Parsons’ top-down engineering in the creation of the nanoscale transistor. Parsons will construct a molecular platform with a tiny indentation into which Gorman, Feldheim and their student team hope to fit a molecular “plug.” The resulting structure should function as an electronic switch – the definition of a transistor.

“Our research will tackle two critical issues in future materials for advanced molecule-based information processing,” says Gorman. “One, how to assemble and attach single molecules to electronic contacts and, two, how to create electronic gain – the fundamental operating principle of a transistor – at the molecular level.”

The benefits of the team’s success could be far ranging, he says. “Better techniques for information processing will keep our economy growing stronger by enabling smaller, faster and lighter electronics.” Imagine, says Gorman, the contents of a library in a postage-stamp-sized chip, and you can begin to ponder some exciting possibilities and “the next phase of electronics development in the United States.”

While the private sector and corporate research and development will ultimately develop such technologies, Gorman says, the fundamental research – with its exploration of byways and promising side streets, false starts as well as serendipitous discoveries – must take place in universities, with federal and state help.

Gorman’s research, for example, is funded by the National Science Foundation through its Nanoscale Interdisciplinary Research Teams (NIRT) program.

Another must, according to Gorman, “is fundamentally changing how the next generation of technically savvy students is educated. In our research, we want our students to pursue degrees that involve traditional science, engineering and technology-development aspects and state-of-the-art research approaches. We also want to expand the opportunities for women and minorities to participate in this new, interdisciplinary paradigm.”

As evidence that this new paradigm is already taking shape, Gorman’s undergraduate and graduate students, “the Gorman Group,” are fully engaged in his quest for the nanoscale transistor. From the newest students, such as Tiffani Bailey and Jennifer Ayres, to rising juniors such as Bill Capshaw and Jonah Jurss, to veteran grad students such as Tyson Chasse and Drew Wassel, among others, the group collaborates in exploring the nanoscale realms for promising applications.

“With the increasingly fast pace of technological change,” says Gorman, “it’s possible that many of the rules that we teach students in college can be obsolete by the time they graduate. That’s why we must focus on how to think, how to solve problems, how to explore the unexpected avenues and surprising new paths – and, in some ways, to disregard traditional disciplinary boundaries.”

Disregarding traditional boundaries may be a necessary practice for all successful scientists, especially the pioneers, such as Gorman, working at the very edge of the possible. When the next generation of technology transforms our lives, it will have been conceived and perfected in university labs, built grant by grant, student by student, molecule by molecule.

Paul K. Mueller | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_11/337.htm

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>