Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecule by Molecule, NC State Scientists Design a New Transistor


When amazing new computers and other electronic devices emerge, they will have been conceived and incubated in university laboratories like that of Dr. Chris Gorman, professor of chemistry at North Carolina State University. There, the scientist and his multidisciplinary team are working to build, molecule by molecule, a nanoscale transistor.

A patterned collection of molecules
created and visualized using scanning tunneling microscopy like that used to help create the nanoscale transistor.
Data collected by R. Fuierer

That’s an electronic switch so small it can only be seen with a high-tech device called a scanning tunneling microscope. And if you go to the library to find the “how-to” book, says Gorman, “most of the pages will be blank, because nobody yet knows how to do it.”

And that, for the chemists, engineers and students engaged in the project, is what makes their painstaking, pioneering research so satisfying. If they can design and construct a nanoscale transistor, Gorman, his colleagues and his students will have filled in many of the blank pages in the how-to book. The field is so new, the research avenues so unexplored, that each experiment, each variation, helps write that book.

Their work is guided by the “bottom-up” approach to building something, says Gorman. “Most things are built using ‘top-down’ methods,” he explains, “where you take a chunk of metal, stone or wood and carve off the material you don’t want, until you have an I-beam or a two-by-four. In contrast, we’re interested in assembling molecules, and building a functioning transistor – with as few of the molecules as possible.”

A persuasive advocate of multidisciplinary research, Gorman is working with NC State colleagues Dr. Daniel L. Feldheim, associate professor of chemistry, and Dr. Gregory N. Parsons, associate professor of chemical engineering, to combine this bottom-up approach with Parsons’ top-down engineering in the creation of the nanoscale transistor. Parsons will construct a molecular platform with a tiny indentation into which Gorman, Feldheim and their student team hope to fit a molecular “plug.” The resulting structure should function as an electronic switch – the definition of a transistor.

“Our research will tackle two critical issues in future materials for advanced molecule-based information processing,” says Gorman. “One, how to assemble and attach single molecules to electronic contacts and, two, how to create electronic gain – the fundamental operating principle of a transistor – at the molecular level.”

The benefits of the team’s success could be far ranging, he says. “Better techniques for information processing will keep our economy growing stronger by enabling smaller, faster and lighter electronics.” Imagine, says Gorman, the contents of a library in a postage-stamp-sized chip, and you can begin to ponder some exciting possibilities and “the next phase of electronics development in the United States.”

While the private sector and corporate research and development will ultimately develop such technologies, Gorman says, the fundamental research – with its exploration of byways and promising side streets, false starts as well as serendipitous discoveries – must take place in universities, with federal and state help.

Gorman’s research, for example, is funded by the National Science Foundation through its Nanoscale Interdisciplinary Research Teams (NIRT) program.

Another must, according to Gorman, “is fundamentally changing how the next generation of technically savvy students is educated. In our research, we want our students to pursue degrees that involve traditional science, engineering and technology-development aspects and state-of-the-art research approaches. We also want to expand the opportunities for women and minorities to participate in this new, interdisciplinary paradigm.”

As evidence that this new paradigm is already taking shape, Gorman’s undergraduate and graduate students, “the Gorman Group,” are fully engaged in his quest for the nanoscale transistor. From the newest students, such as Tiffani Bailey and Jennifer Ayres, to rising juniors such as Bill Capshaw and Jonah Jurss, to veteran grad students such as Tyson Chasse and Drew Wassel, among others, the group collaborates in exploring the nanoscale realms for promising applications.

“With the increasingly fast pace of technological change,” says Gorman, “it’s possible that many of the rules that we teach students in college can be obsolete by the time they graduate. That’s why we must focus on how to think, how to solve problems, how to explore the unexpected avenues and surprising new paths – and, in some ways, to disregard traditional disciplinary boundaries.”

Disregarding traditional boundaries may be a necessary practice for all successful scientists, especially the pioneers, such as Gorman, working at the very edge of the possible. When the next generation of technology transforms our lives, it will have been conceived and perfected in university labs, built grant by grant, student by student, molecule by molecule.

Paul K. Mueller | NC State University
Further information:

More articles from Interdisciplinary Research:

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>