Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Over land, sea and air, users give MERIS high marks

17.11.2003


More than 150 researchers from across Europe, Canada, the United States, China and as far away as Chile have come together to recount their many and varied uses of a single instrument – a desk-sized camera called MERIS, hurtling through space aboard Envisat at more than seven kilometres per second.



The Medium Resolution Imaging Spectrometer (MERIS) is one of ten sensors on Envisat, looking down from the earthward face of the spacecraft. It works by recording visible and near-infrared radiation reflecting from our planet across a range of up to 15 programmable wavebands, to a resolution of either 1200 or 300 metres.
This flexibility and the excellent radiometric and spectral performance designed into the instrument means that scientists can make use of MERIS data across many different fields, variously obtaining information on Earth’s oceans, coastal zones, land surfaces and atmosphere – and potentially combining it with results from other Envisat instruments.

Since MERIS was launched as part of Envisat in March 2002 there have been several gatherings concerned with complex calibration and validation processes needed to ’fine-tune’ instrument performance, but last week’s MERIS User’s Workshop 2003 was the first time that users of MERIS products had a chance to meet up, share initial results and exchange their views of MERIS with ESA and each other.



"The MERIS data users attending included principal investigators, students and value-adding companies," said Workshop organiser Peter Regner. "The feeling among attendees seems to be that such activities are an excellent communication tool and will be repeated in the future."

The User Workshop started on 10 November and was hosted by ESA at its ESRIN centre in Frascati, near Rome. Attendees were in for a busy four days, with more than 50 presentations and round tables packed into the schedule, together with poster sessions, training sessions in the BEAM (Basic ERS, Envisat (A)ATSR and MERIS Toolbox) software used for data processing and special sessions on key themes including water, land and atmosphere applications.

Olivier Arino, Head of Projects in ESA’s Earth Observation Applications Department gave the Workshop an overview of projects being run by the Agency that use MERIS or similar instruments to attempt to develop operational services to the global community, responding to the requirements of key users. Work is already being done across a variety of fields such as carbon modelling, food security, marine pollution, fishery and snow mapping and desertification.

Ocean colour scene

As a pioneer in the field of ocean colour, Professor André Morel of the University of Pierre and Marie Curie in Paris has had a long association with MERIS. During the Workshop he co-chaired a splinter session on MERIS water products. Accurate measurements along signature wavebands means water contents can be known to a high degree of accuracy – from suspended sediments to living phytoplankton.

"Our expectations were very high for this instrument," said Morel. "The scientific community was waiting a long time. Now at last the products are routinely available for use by scientists. Overall the results we are getting seem very positive and reliable. The performance of the MERIS instrument is living up to the promise of its original design."

Accurately measuring ocean colour with MERIS presents a real technical challenge, particularly because only 1% of the top-of-atmosphere signal actually comes direct from ocean colour – the 99% comes from the atmosphere. To banish the effects of atmospheric distortion for ocean colour study meant extensive study of signal alteration – and almost by default this knowledge also enabled improved observation of atmospheric constituents.

Something in the air

"MERIS was not originally envisaged as an atmospheric sensor, but we have found it works very well as one," said Prof. Jan-Peter Muller of University College London. "For instance, we can detect surface and cloud top pressure up to an accuracy of 100 metres, the presence of aerosols and also water vapour concentration up to an accuracy of 3%, which represents unprecedented accuracy.

"Water vapour is highly variable in the atmosphere, and knowledge of its distribution would be very useful for forecasting rainfall. MERIS’s revisit time of three days is too low for operational weather forecasting, but it raises the suggestion that a version of the instrument might be flown on future weather satellites."

Ground work

Over solid ground, MERIS images provide information on land use and vegetation cover, and specific chlorophyll-linked spectral bands help quantify biomass concentration and condition.

Professor Jose Moreno of the University of Valencia detailed MERIS-related results from a July multi-spacecraft validation campaign carried out at the Barrax test site in La Mancha, Spain. The agricultural fields making up the site were characterised to a very high degree of detail, with more than 4000 ground samples taken, plus recordings of atmospheric conditions.

"Often you can have a good knowledge of the land surface corrections required but not the atmospheric corrections - or vice versa," said Moreno. "But with MERIS we have both, which means we can be more confident the data show what is really there.

"Being able to compare MERIS data with ESA’s Proba micro-satellite was also useful. The main camera on Proba has four times the spectral bands on MERIS, and its resolution is 30 metres instead of 300 metres – so we could make out individual fields with Proba, to check them against what the larger-scale MERIS images were showing."

Microscopic killers

Since MERIS products became available in March 2003, Dr Cristina Rodríguez-Benito of Chile-based oceanographic company Mariscope Chilena has been using it to chart one very specific phenomenon: fish-killing algae blooms that threaten Chile’s successful aquaculture industry.

"My interest is not only scientific research but also to focus this work on a direct application," said Rodríguez-Benito. "MERIS works better for the purpose of detecting algae blooms than comparable ocean colour instruments such as MODIS."

Formed from individually microscopic phytoplankton, algae blooms occur when favourable local conditions encourage their growth to ’bloom’ out of control. Some algae species contain toxins that can poison humans who eat contaminated shellfish. Alternatively the spreading blooms can deplete water of oxygen as they decay, causing larger fish to suffocate.

Fish farms are especially vulnerable to algae blooms because fish cannot flee affected zones. The southern region of Chile has 360 fish farms in the ocean and 40 in freshwater, producing up to 450,000 tonnes of biomass annually. In 1997 alone, Chilean algae blooms caused losses totalling €10 million ($12 million).

Rodríguez-Benito’s pilot project – recounted during the Workshop - is co-funded by Mariscope Chilena and Salmon Chile, the national fish-farming industry association. These institutions aim to investigate the feasibility of an operational satellite-based early warning service.

"As spring came to the southern hemisphere in October we have witnessed new blooms appearing," said Rodríguez-Benito. "In situ water testing, using an instrument called a Fluoroprobe, confirms the detection of five different algae classes. The total chlorophyll concentration measured using this fluorometer was successfully correlated with MERIS data."

"The project will continue until the beginning of 2004, as a first step. For the near future we also hope to make use of other Envisat instruments to simultaneously measure important variables like sea surface temperature and ocean currents. Knowing these will be necessary to make forecasting the drift of algae blooms a reality."

Looking forward

In concluding the Workshop on Thursday afternoon, Peter Regner thanked all participants for the very high quality contributions they made: "The Workshop discussions brought forth a number of valuable recommendations which will certainly be taken into consideration in the definition of the future MERIS exploitation plan."

He indicated that the next opportunity for the community to meet again will be next year’s Envisat symposium, scheduled to take place from 6 to 10 September 2004 in Salzburg in Austria.

Peter Regner | alfa
Further information:
http://www.esa.int/export/esaSA/SEMSO4XLDMD_earth_0.html

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>