Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-low oxygen could have triggered die-offs, spurred bird breathing system

31.10.2003


Recent evidence suggests that oxygen levels were suppressed worldwide 175 million to 275 million years ago and fell to precipitously low levels compared with today’s atmosphere, low enough to make breathing the air at sea level feel like respiration at high altitude.

Now, a University of Washington paleontologist theorizes that low oxygen and repeated short but substantial temperature increases because of greenhouse warming sparked two major mass-extinction events, one of which eradicated 90 percent of all species on Earth.

In addition, Peter Ward, a UW professor of biology and Earth and space sciences, believes the conditions spurred the development of an unusual breathing system in some dinosaurs, a group called Saurischian dinosaurs that includes the gigantic brontosaurus. Rather than having a diaphragm to force air in and out of lungs, the Saurischians had lungs attached to a series of thin-walled air sacs that appear to have functioned something like bellows to move air through the body.



Ward, working with UW biologist Raymond Huey and UW radiologist Kevin Conley, believes that breathing system, still found in today’s birds, made the Saurischian dinosaurs better equipped than mammals to survive the harsh conditions in which oxygen content of air at the Earth’s surface was only about half of today’s 21 percent.

"The literature always said that the reason birds had sacs was so they could breathe when they fly. But I don’t know of any brontosaurus that could fly," Ward said. "However, when we considered that birds fly at altitudes where oxygen is significantly lower, we finally put it all together with the fact that the oxygen level at the surface was only 10 percent to 11 percent at the time the dinosaurs evolved.

"That’s the same as trying to breathe at 14,000 feet. If you’ve ever been at 14,000 feet, you know it’s not easy to breathe," he said.

Ward believes the low oxygen and greenhouse conditions caused by high levels of methane from intense volcanic activity are likely culprits in mass extinctions that occurred about 250 million years ago, at the boundary between the Permian and Triassic periods, and about 200 million years ago, at the boundary between the Triassic and Jurassic periods.

The Permian-Triassic extinction is believed to have eradicated 90 percent of all species, including most protomammals, a group of mammal-like reptiles that were the immediate ancestors of true mammals. The Triassic-Jurassic extinction killed more than half the species on Earth, with mammal-like reptiles and true mammals, which evolved during the Triassic Period, hit particularly hard. But dinosaurs, which also evolved between the two extinctions, had little problem with conditions during the Triassic-Jurassic extinction.

"The seminal observation is that dinosaurs skated across the second of these mass extinctions, actually increasing in number as they went along, while everything else was dropping around them," Ward said.

Scientists know of five mass extinction events in Earth’s history, but a cause has been widely agreed upon for only one – the episode at the end of the Cretaceous Period 65 million years ago, when the impact of an asteroid is believed to have brought the demise of the dinosaurs. Such impact also has been suggested as the cause of the Permian-Triassic and Triassic-Jurassic extinctions, but geologists have yet to unearth any indisputable evidence of such an impact, and there is no conclusive evidence of what caused either of the events.

Ward said mass spectrometer readings on fossil material, as well as the extinction pattern for fossils in rock outcrops collected from the time of the two extinctions, indicates the events were drawn-out affairs and did not happen suddenly, as they would have with an asteroid impact.

In addition, he said it is known which types of creatures, and which breathing systems, best survived the extinction events. The same breathing systems are still present in birds, which are known to fare well at high altitudes, where oxygen levels are substantially lower than at the surface.

"The reason the birds developed these systems is that they arose from dinosaurs halfway through the Jurassic Period. They are how the dinosaurs survived," he said.


For more information, contact Ward at (206) 543-2962 or argo@u.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>