Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nanocells function as non-volatile memory

20.10.2003


First use of disordered nanowires, organic molecules as programmable memory



Chemists at Rice University have demonstrated that disordered assemblies of gold nanowires and conductive organic molecules can function as non-volatile memory, one of the key components of computer chips.

"A large part of the cost associated with creating integrated circuits comes from the painstaking precision required to ensure that each of the millions of circuits on the chip are placed in exactly the right spot," said lead researcher Jim Tour, an organic chemist at Rice. "Our research shows that ordered precision isn’t a prerequisite for computing. It is possible to make memory circuits out of disordered systems."


The research appears in the Oct. 29 issue of the Journal of the American Chemical Society. It marks the first time that a self-assembled ensemble of molecular electronic components has been used to create complex devices that carry out basic computing functions. Dubbed NanoCells, the devices were shown to function as re-programmable memory with memory states that hold for more than a week at room temperature, and probably far longer. Present-day dynamic random access memory, or DRAM, only holds its memory state for about one hundredth of a second and must be refreshed every thousandth of a second.

In previous experiments, Tour, the Chao Professor of Chemistry and professor of computer science, mechanical engineering and materials science, has used single molecules as switches, memory devices, resistors, diodes, junctions and wires. The creation of the prototype NanoCell marks the first time such molecules have been used to form a working microelectronic device.

The NanoCell consists of a set of discontinuous islands of gold film that are vapor-deposited onto a flat rectangle of silicon dioxide measuring about 40 microns by 10 microns. By submersing the sliver of silicon dioxide into a liquid solution of precisely synthesized organic molecules and gold nanowires, Tour is able to create conductive links between the islands of gold foil. Ten gold leads spaced five microns apart around the perimeter of the NanoCell carry electronic signals to and from the device. The size of the host platform is not critical, so the technology can scale down to much smaller sizes.

Compared to metal-oxide semiconductor technology, molecular electronic devices like NanoCells, offer the potential to reduce device size and fabrication costs by several orders of magnitude. With the NanoCell architecture, Tour hopes to address the nanoscale via the microscale, taking advantage of the ultrasmall molecules using current lithographic tools.

In addition to memory, Tour’s group is actively studying how NanoCells can be used to as logic gates. Since the precise placement of components is disordered, the NanoCells can’t be programmed like today’s computers. Instead, they must be trained to carry out specific logical functions. Even if this process is only a few percent efficient in the use of molecular devices, it could result in very high logic densities, making it possible for computer makers to create much more powerful chips.

The JACS paper, titled "NanoCell Electronic Memories," was co-authored by Tour, postdoctoral researchers Long Cheng and Yuxing Yao, graduate student Austen Flatt, Penn State chemist Thomas Mallouk and his graduate student Sarah St. Angelo, and North Carolina State electrical engineer Paul Franzon and his graduate student David Nackashi.


The research was sponsored by the Defense Advanced Research Projects Agency, the Office of Naval Research and Molecular Electronics Corp.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>