Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nanocells function as non-volatile memory

20.10.2003


First use of disordered nanowires, organic molecules as programmable memory



Chemists at Rice University have demonstrated that disordered assemblies of gold nanowires and conductive organic molecules can function as non-volatile memory, one of the key components of computer chips.

"A large part of the cost associated with creating integrated circuits comes from the painstaking precision required to ensure that each of the millions of circuits on the chip are placed in exactly the right spot," said lead researcher Jim Tour, an organic chemist at Rice. "Our research shows that ordered precision isn’t a prerequisite for computing. It is possible to make memory circuits out of disordered systems."


The research appears in the Oct. 29 issue of the Journal of the American Chemical Society. It marks the first time that a self-assembled ensemble of molecular electronic components has been used to create complex devices that carry out basic computing functions. Dubbed NanoCells, the devices were shown to function as re-programmable memory with memory states that hold for more than a week at room temperature, and probably far longer. Present-day dynamic random access memory, or DRAM, only holds its memory state for about one hundredth of a second and must be refreshed every thousandth of a second.

In previous experiments, Tour, the Chao Professor of Chemistry and professor of computer science, mechanical engineering and materials science, has used single molecules as switches, memory devices, resistors, diodes, junctions and wires. The creation of the prototype NanoCell marks the first time such molecules have been used to form a working microelectronic device.

The NanoCell consists of a set of discontinuous islands of gold film that are vapor-deposited onto a flat rectangle of silicon dioxide measuring about 40 microns by 10 microns. By submersing the sliver of silicon dioxide into a liquid solution of precisely synthesized organic molecules and gold nanowires, Tour is able to create conductive links between the islands of gold foil. Ten gold leads spaced five microns apart around the perimeter of the NanoCell carry electronic signals to and from the device. The size of the host platform is not critical, so the technology can scale down to much smaller sizes.

Compared to metal-oxide semiconductor technology, molecular electronic devices like NanoCells, offer the potential to reduce device size and fabrication costs by several orders of magnitude. With the NanoCell architecture, Tour hopes to address the nanoscale via the microscale, taking advantage of the ultrasmall molecules using current lithographic tools.

In addition to memory, Tour’s group is actively studying how NanoCells can be used to as logic gates. Since the precise placement of components is disordered, the NanoCells can’t be programmed like today’s computers. Instead, they must be trained to carry out specific logical functions. Even if this process is only a few percent efficient in the use of molecular devices, it could result in very high logic densities, making it possible for computer makers to create much more powerful chips.

The JACS paper, titled "NanoCell Electronic Memories," was co-authored by Tour, postdoctoral researchers Long Cheng and Yuxing Yao, graduate student Austen Flatt, Penn State chemist Thomas Mallouk and his graduate student Sarah St. Angelo, and North Carolina State electrical engineer Paul Franzon and his graduate student David Nackashi.


The research was sponsored by the Defense Advanced Research Projects Agency, the Office of Naval Research and Molecular Electronics Corp.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Interdisciplinary Research:

nachricht Body Talk: A New Crowdshaping Technology Uses Words to Create Accurate 3D Body Models
27.07.2016 | Max-Planck-Institut für Intelligente Systeme

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>