Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Self-assembled nanocells function as non-volatile memory


First use of disordered nanowires, organic molecules as programmable memory

Chemists at Rice University have demonstrated that disordered assemblies of gold nanowires and conductive organic molecules can function as non-volatile memory, one of the key components of computer chips.

"A large part of the cost associated with creating integrated circuits comes from the painstaking precision required to ensure that each of the millions of circuits on the chip are placed in exactly the right spot," said lead researcher Jim Tour, an organic chemist at Rice. "Our research shows that ordered precision isn’t a prerequisite for computing. It is possible to make memory circuits out of disordered systems."

The research appears in the Oct. 29 issue of the Journal of the American Chemical Society. It marks the first time that a self-assembled ensemble of molecular electronic components has been used to create complex devices that carry out basic computing functions. Dubbed NanoCells, the devices were shown to function as re-programmable memory with memory states that hold for more than a week at room temperature, and probably far longer. Present-day dynamic random access memory, or DRAM, only holds its memory state for about one hundredth of a second and must be refreshed every thousandth of a second.

In previous experiments, Tour, the Chao Professor of Chemistry and professor of computer science, mechanical engineering and materials science, has used single molecules as switches, memory devices, resistors, diodes, junctions and wires. The creation of the prototype NanoCell marks the first time such molecules have been used to form a working microelectronic device.

The NanoCell consists of a set of discontinuous islands of gold film that are vapor-deposited onto a flat rectangle of silicon dioxide measuring about 40 microns by 10 microns. By submersing the sliver of silicon dioxide into a liquid solution of precisely synthesized organic molecules and gold nanowires, Tour is able to create conductive links between the islands of gold foil. Ten gold leads spaced five microns apart around the perimeter of the NanoCell carry electronic signals to and from the device. The size of the host platform is not critical, so the technology can scale down to much smaller sizes.

Compared to metal-oxide semiconductor technology, molecular electronic devices like NanoCells, offer the potential to reduce device size and fabrication costs by several orders of magnitude. With the NanoCell architecture, Tour hopes to address the nanoscale via the microscale, taking advantage of the ultrasmall molecules using current lithographic tools.

In addition to memory, Tour’s group is actively studying how NanoCells can be used to as logic gates. Since the precise placement of components is disordered, the NanoCells can’t be programmed like today’s computers. Instead, they must be trained to carry out specific logical functions. Even if this process is only a few percent efficient in the use of molecular devices, it could result in very high logic densities, making it possible for computer makers to create much more powerful chips.

The JACS paper, titled "NanoCell Electronic Memories," was co-authored by Tour, postdoctoral researchers Long Cheng and Yuxing Yao, graduate student Austen Flatt, Penn State chemist Thomas Mallouk and his graduate student Sarah St. Angelo, and North Carolina State electrical engineer Paul Franzon and his graduate student David Nackashi.

The research was sponsored by the Defense Advanced Research Projects Agency, the Office of Naval Research and Molecular Electronics Corp.

Jade Boyd | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>