Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembled nanocells function as non-volatile memory

20.10.2003


First use of disordered nanowires, organic molecules as programmable memory



Chemists at Rice University have demonstrated that disordered assemblies of gold nanowires and conductive organic molecules can function as non-volatile memory, one of the key components of computer chips.

"A large part of the cost associated with creating integrated circuits comes from the painstaking precision required to ensure that each of the millions of circuits on the chip are placed in exactly the right spot," said lead researcher Jim Tour, an organic chemist at Rice. "Our research shows that ordered precision isn’t a prerequisite for computing. It is possible to make memory circuits out of disordered systems."


The research appears in the Oct. 29 issue of the Journal of the American Chemical Society. It marks the first time that a self-assembled ensemble of molecular electronic components has been used to create complex devices that carry out basic computing functions. Dubbed NanoCells, the devices were shown to function as re-programmable memory with memory states that hold for more than a week at room temperature, and probably far longer. Present-day dynamic random access memory, or DRAM, only holds its memory state for about one hundredth of a second and must be refreshed every thousandth of a second.

In previous experiments, Tour, the Chao Professor of Chemistry and professor of computer science, mechanical engineering and materials science, has used single molecules as switches, memory devices, resistors, diodes, junctions and wires. The creation of the prototype NanoCell marks the first time such molecules have been used to form a working microelectronic device.

The NanoCell consists of a set of discontinuous islands of gold film that are vapor-deposited onto a flat rectangle of silicon dioxide measuring about 40 microns by 10 microns. By submersing the sliver of silicon dioxide into a liquid solution of precisely synthesized organic molecules and gold nanowires, Tour is able to create conductive links between the islands of gold foil. Ten gold leads spaced five microns apart around the perimeter of the NanoCell carry electronic signals to and from the device. The size of the host platform is not critical, so the technology can scale down to much smaller sizes.

Compared to metal-oxide semiconductor technology, molecular electronic devices like NanoCells, offer the potential to reduce device size and fabrication costs by several orders of magnitude. With the NanoCell architecture, Tour hopes to address the nanoscale via the microscale, taking advantage of the ultrasmall molecules using current lithographic tools.

In addition to memory, Tour’s group is actively studying how NanoCells can be used to as logic gates. Since the precise placement of components is disordered, the NanoCells can’t be programmed like today’s computers. Instead, they must be trained to carry out specific logical functions. Even if this process is only a few percent efficient in the use of molecular devices, it could result in very high logic densities, making it possible for computer makers to create much more powerful chips.

The JACS paper, titled "NanoCell Electronic Memories," was co-authored by Tour, postdoctoral researchers Long Cheng and Yuxing Yao, graduate student Austen Flatt, Penn State chemist Thomas Mallouk and his graduate student Sarah St. Angelo, and North Carolina State electrical engineer Paul Franzon and his graduate student David Nackashi.


The research was sponsored by the Defense Advanced Research Projects Agency, the Office of Naval Research and Molecular Electronics Corp.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>