Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows little effect from Arctic offshore oil drilling

02.10.2003


Research reveals thriving oceanographic system



When the U.S. Dept. of Interior contracted with Florida Tech Oceanographer John Trefry to study the impact of recent offshore oil drilling in the Alaskan Arctic, the Florida Academy of Sciences gold medallist had some concerns about what he might discover. Instead of finding significant impacts, however, Trefry and his team of Florida Tech scientists were amazed by the discovery of a remarkable, thriving oceanographic system.

During the past 25 years, corporations have plumbed the depths of the Arctic Alaskan mainland for oil, collecting more than 13 billion barrels in the process. More recently, these companies expanded efforts to include offshore drilling. Trefry and his Florida Tech team, Steven Wood, assistant professor of oceanography, Bob Trocine, senior research associate, Robert Rember, research scientist, and graduate students Michelle McElvaine, Lee Frey, and Debra Woodall were funded by the department’s Minerals Management Service to learn if this new drilling was causing negative impacts on the environment. Trefry’s research has been extensive.


"We analyzed several species of fish, clams and amphipods," said Trefry. "We also studied the water, ice and mud to check for potential pollution." What Trefry’s team and their colleagues from Battelle Ocean Sciences, Kinnetics Laboratories, Applied Marine Sciences and the University of Texas Marine Lab discovered through their analyses was a pleasant surprise. "We found early in the process that impacts to the environment from offshore drilling were minimal," Trefry said. "In fact, the entire offshore area was near pristine. During the past four years we’ve continued to monitor the area and still have no evidence of significant impacts."

After the first year, Trefry reoriented the program from being solely an impact study to one that would investigate the natural oceanographic system of the Alaskan Arctic. Trefry spent much of the next three springs and summers in the area, studying how the summertime melt on the mainland affected the surrounding ocean.

"Starting in late May of 2001 and 2002 we began intensive daily sampling at three rivers, trying to understand the input of dissolved chemicals and suspended sediments into the ocean," said Trefry. "What we found was that more than 80 percent of the sediment that enters the ocean over the course of the year comes in a single two-week period."

This late May meltdown arrives early enough in the year to meet unusual resistance. The Artic Ocean at that time of year is topped with a six-foot layer of ice. As a result, the freshwater runoff has no way to merge into the saltwater ocean.

"The freshwater runs out over and just under the ice. The ocean water is so cold (30.8 degrees F) that any freshwater that flows underneath the six-foot top layer, is quickly trapped by a second, thinner layer of ice beneath the flow," he said.

The freshwater runoff stretched out at least 10 miles from the mainland without mixing with the ocean waters below. This discovery explained two environmental phenomena.

First, rivers normally introduce large amounts of nitrogen and phosphorous into the ocean. This introduction leads to plankton blooms. Trefry and his team now had a tangible reason for the late growth of these blooms in the Arctic Ocean. Second, they gained a greater understanding of why the ocean was still in near-pristine condition after years of oil-drilling. Trefry said that they were no longer surprised by their first-year results.

"What we came to realize is that extreme caution by industry, combined with movement of water and sediment offshore, help keep the coastal system clean," he said.

Jay Wilson | EurekAlert!
Further information:
http://www.fit.edu

More articles from Interdisciplinary Research:

nachricht Body Talk: A New Crowdshaping Technology Uses Words to Create Accurate 3D Body Models
27.07.2016 | Max-Planck-Institut für Intelligente Systeme

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>