Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research shows little effect from Arctic offshore oil drilling


Research reveals thriving oceanographic system

When the U.S. Dept. of Interior contracted with Florida Tech Oceanographer John Trefry to study the impact of recent offshore oil drilling in the Alaskan Arctic, the Florida Academy of Sciences gold medallist had some concerns about what he might discover. Instead of finding significant impacts, however, Trefry and his team of Florida Tech scientists were amazed by the discovery of a remarkable, thriving oceanographic system.

During the past 25 years, corporations have plumbed the depths of the Arctic Alaskan mainland for oil, collecting more than 13 billion barrels in the process. More recently, these companies expanded efforts to include offshore drilling. Trefry and his Florida Tech team, Steven Wood, assistant professor of oceanography, Bob Trocine, senior research associate, Robert Rember, research scientist, and graduate students Michelle McElvaine, Lee Frey, and Debra Woodall were funded by the department’s Minerals Management Service to learn if this new drilling was causing negative impacts on the environment. Trefry’s research has been extensive.

"We analyzed several species of fish, clams and amphipods," said Trefry. "We also studied the water, ice and mud to check for potential pollution." What Trefry’s team and their colleagues from Battelle Ocean Sciences, Kinnetics Laboratories, Applied Marine Sciences and the University of Texas Marine Lab discovered through their analyses was a pleasant surprise. "We found early in the process that impacts to the environment from offshore drilling were minimal," Trefry said. "In fact, the entire offshore area was near pristine. During the past four years we’ve continued to monitor the area and still have no evidence of significant impacts."

After the first year, Trefry reoriented the program from being solely an impact study to one that would investigate the natural oceanographic system of the Alaskan Arctic. Trefry spent much of the next three springs and summers in the area, studying how the summertime melt on the mainland affected the surrounding ocean.

"Starting in late May of 2001 and 2002 we began intensive daily sampling at three rivers, trying to understand the input of dissolved chemicals and suspended sediments into the ocean," said Trefry. "What we found was that more than 80 percent of the sediment that enters the ocean over the course of the year comes in a single two-week period."

This late May meltdown arrives early enough in the year to meet unusual resistance. The Artic Ocean at that time of year is topped with a six-foot layer of ice. As a result, the freshwater runoff has no way to merge into the saltwater ocean.

"The freshwater runs out over and just under the ice. The ocean water is so cold (30.8 degrees F) that any freshwater that flows underneath the six-foot top layer, is quickly trapped by a second, thinner layer of ice beneath the flow," he said.

The freshwater runoff stretched out at least 10 miles from the mainland without mixing with the ocean waters below. This discovery explained two environmental phenomena.

First, rivers normally introduce large amounts of nitrogen and phosphorous into the ocean. This introduction leads to plankton blooms. Trefry and his team now had a tangible reason for the late growth of these blooms in the Arctic Ocean. Second, they gained a greater understanding of why the ocean was still in near-pristine condition after years of oil-drilling. Trefry said that they were no longer surprised by their first-year results.

"What we came to realize is that extreme caution by industry, combined with movement of water and sediment offshore, help keep the coastal system clean," he said.

Jay Wilson | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>