Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shows little effect from Arctic offshore oil drilling

02.10.2003


Research reveals thriving oceanographic system



When the U.S. Dept. of Interior contracted with Florida Tech Oceanographer John Trefry to study the impact of recent offshore oil drilling in the Alaskan Arctic, the Florida Academy of Sciences gold medallist had some concerns about what he might discover. Instead of finding significant impacts, however, Trefry and his team of Florida Tech scientists were amazed by the discovery of a remarkable, thriving oceanographic system.

During the past 25 years, corporations have plumbed the depths of the Arctic Alaskan mainland for oil, collecting more than 13 billion barrels in the process. More recently, these companies expanded efforts to include offshore drilling. Trefry and his Florida Tech team, Steven Wood, assistant professor of oceanography, Bob Trocine, senior research associate, Robert Rember, research scientist, and graduate students Michelle McElvaine, Lee Frey, and Debra Woodall were funded by the department’s Minerals Management Service to learn if this new drilling was causing negative impacts on the environment. Trefry’s research has been extensive.


"We analyzed several species of fish, clams and amphipods," said Trefry. "We also studied the water, ice and mud to check for potential pollution." What Trefry’s team and their colleagues from Battelle Ocean Sciences, Kinnetics Laboratories, Applied Marine Sciences and the University of Texas Marine Lab discovered through their analyses was a pleasant surprise. "We found early in the process that impacts to the environment from offshore drilling were minimal," Trefry said. "In fact, the entire offshore area was near pristine. During the past four years we’ve continued to monitor the area and still have no evidence of significant impacts."

After the first year, Trefry reoriented the program from being solely an impact study to one that would investigate the natural oceanographic system of the Alaskan Arctic. Trefry spent much of the next three springs and summers in the area, studying how the summertime melt on the mainland affected the surrounding ocean.

"Starting in late May of 2001 and 2002 we began intensive daily sampling at three rivers, trying to understand the input of dissolved chemicals and suspended sediments into the ocean," said Trefry. "What we found was that more than 80 percent of the sediment that enters the ocean over the course of the year comes in a single two-week period."

This late May meltdown arrives early enough in the year to meet unusual resistance. The Artic Ocean at that time of year is topped with a six-foot layer of ice. As a result, the freshwater runoff has no way to merge into the saltwater ocean.

"The freshwater runs out over and just under the ice. The ocean water is so cold (30.8 degrees F) that any freshwater that flows underneath the six-foot top layer, is quickly trapped by a second, thinner layer of ice beneath the flow," he said.

The freshwater runoff stretched out at least 10 miles from the mainland without mixing with the ocean waters below. This discovery explained two environmental phenomena.

First, rivers normally introduce large amounts of nitrogen and phosphorous into the ocean. This introduction leads to plankton blooms. Trefry and his team now had a tangible reason for the late growth of these blooms in the Arctic Ocean. Second, they gained a greater understanding of why the ocean was still in near-pristine condition after years of oil-drilling. Trefry said that they were no longer surprised by their first-year results.

"What we came to realize is that extreme caution by industry, combined with movement of water and sediment offshore, help keep the coastal system clean," he said.

Jay Wilson | EurekAlert!
Further information:
http://www.fit.edu

More articles from Interdisciplinary Research:

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>