Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CSIRO helps find oil in PNG ’Moose’


A team of ten CSIRO researchers has helped Canadian oil company InterOil find exciting new oil shows in Papua New Guinea.

CSIRO's Tony Allan with PNG field team during recent geological research in the Purari River region

A panoramic view from the Moose-1 well towards the Purari River and Papuan foothills

This early success follows from a vigorous exploration program, conducted in an ongoing research partnership with CSIRO’s Petroleum Division. The CSIRO studies have been critical to this result, consolidating evidence for a new petroleum system in InterOil’s exploration Licenses.

In late July InterOil announced finding fourteen oil shows through 135 meters (443 feet) of cored Tertiary limestones in the Moose-1 ST1 well, located 350km northwest of Port Moresby, in the Gulf Province of Papua New Guinea. The company plans to undertake additional testing, production and development drilling to determine the structure’s resource potential. Commercial confirmation would result in the first significant hydrocarbon discovery in the area in 44 years.

Recognising the geological and geochemical complexity of the PNG province, the company sought to capitalise on CSIRO’s specialist technologies and expertise in the Papuan Basin. InterOil’s General Manager of Exploration and Production, Andy Carroll says: "CSIRO has provided us with key technical expertise across several functions."

For example, the application of high resolution strontium isotopic age dating to limestones and other marine fossils allows CSIRO and InterOil geoscientists to build an accurate ’stratigraphic yardstick’. This will permit accurate prediction of subsurface structure ’ahead of the bit’ during the forthcoming multi-well drilling program.

The accurate limestone ages are also used to construct basin models that assist with the prediction of subsurface reservoir distribution through InterOil’s exploration area. In addition, CSIRO is independently evaluating reservoir data like porosity and permeability, and geochemically typing hydrocarbons. InterOil is using these data in estimating potential predrill reservoir sizes and hydrocarbon volumetrics.

CSIRO researchers have been studying InterOil’s prospects, covering the area northwest from Port Moresby into the Papuan foothills and highlands north of the Gulf of Papua, examining reservoir quality and sedimentology, organic geochemistry and petrology, geochronology and regional basin history. The work has included detailed laboratory analysis and field studies.

CSIRO Project Coordinator, Tony Allan says the project is of great scientific interest.

"This work builds on 10 years of CSIRO research in Papua New Guinea," he says. "It is providing unique insights into petroleum system evolution throughout the Papuan Basin, with a direct impact on models driving current exploration in this region.

"Our InterOil work is also relevant to petroleum systems analysis across the northwest Australian margin, and to the continuing development of CSIRO exploration and appraisal technologies."

The new chief of the Division, Professor Beverley Ronalds, is encouraging the future development of the CSIRO-InterOil science alliance. "CSIRO’s role in exploration-related research is not only about developing new technologies but ensuring they are applied and are making a difference in the industry. I am delighted that our research partnership with InterOil is delivering on both" Professor Ronalds

Mr Nick Goldie | CSIRO
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>