Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planetary tilt not a spoiler for habitation

26.08.2003


In B science fiction movies, a terrible force often pushes the Earth off its axis and spells disaster for all life on Earth. In reality, life would still be possible on Earth and any Earth-like planets if the axis tilt were greater than it is now, according to Penn State researchers.



"We do not currently have observations of extrasolar planets, but I imagine that in the near future, we will uncover some of these small planets," says Dr. Darren M. Williams, assistant professor of physics and astronomy, Penn State Erie, the Behrend College. "The issue before us is what will they be like? Will they have moons? What will their climates be like? Will they be teaming with life or will life be rare?

"I suspect, based on simulations and our own solar system, that many Earth-like planets will have spin axes that are tipped more severely than Earth’s axis."


Williams, working with David Pollard, research associate in geoscience at Penn State, used general circulation climate models to simulate a variety of tilts, carbon dioxide levels and planets. They reported on their findings in the International Journal of Astrobiology.

The researchers first looked at present-day Earth with tilts of 23, 54, 70 and 85 degrees. Earth’s tilt today is about 23 degrees. The simulation that mimicked today’s Earth and tilt closely matched today’s climate, including regional precipitation patterns, snow and ice cover and drought.

"Tilts greater than the present produce global annual-mean temperatures higher than Earth’s present mean temperature of about 57 degrees Fahrenheit," says Williams. "Above 54 degrees of tilt, the trend is for the global annual-mean temperature to decrease as tilt increases."

The Penn State scientist explains that this decrease occurs because more land exists north of the equator in present-day Earth. Annual-mean temperatures, however, are not the best way to determine if a planet might be habitable, as seasonal temperature variations could be extreme.

The researchers also looked at these tilted Earths with ten times the carbon dioxide in the atmosphere. Carbon dioxide as a greenhouse gas increases the temperatures on a planet. These models produced Earths with 11 to 18 degrees Fahrenheit higher annual-mean temperatures.

Because all planets will not have Earth’s geography, the researchers took a page from Earth’s history and modeled a 750-million-year-old Earth representing the Sturtian glaciation and a 540-million-year-old Earth, the closest approximation available for the Varanger glaciation.

"During the Sturtian, land masses were mainly equatorial and clumped mostly within 30 degrees of the equator," says the Penn State Erie researcher. "In the Varanger model, everything is close to the south pole."

While current day Earth is about 30 percent land to 70 percent water, these ancient geographies are about 22 percent land and 78 percent water.

"The highest temperatures and seasonal variations happen with the largest land areas at the mid to high latitudes," says Williams. The researchers also ran some of the model Earths with zero tilt.

"Present Earth is one of the most uninhabitable planets that we have simulated," says Williams. "Approximately 8.7 percent of the Earth’s surface is colder than 14 degrees Fahrenheit on average, and this percentage peaks at 13.2 percent in February owing to the large landmasses at high latitude covered by snow."

The only planets colder than today’s Earth are those planets simulated with no tilt.

The Varanger simulation, with most land in the southern hemisphere, is the most extreme with 15.6 percent of the surface below 14 degrees Fahrenheit in July and 9.3 percent of the surface above 122 degrees Fahrenheit in January. On average, nearly 28 percent of this planet’s land mass is uninhabitable by Earth standards.

"This simulation suggests that planets with either large polar supercontinents or small inventories of water will be the most problematic for life at high obliquity," says Williams.

None of the planets with increased tilt had permanent ice sheets near the equator. This, however, does not guarantee that a world is suitable for life, the researchers note. The extremes of temperature on most of the simulated earths would make it difficult for all but the simplest Earth life forms to survive. Extremes caused because the tilt puts large portions of the planet in 24-hour darkness or 24-hour sunlight for long periods would also inhibit photosynthetic organisms.

The researchers suggest that even with high tilt, life can exist on the planets they modeled.

"Provided the life does not occupy continental surfaces plagued seasonally by the highest temperature, these planets could support more advanced life," the researchers say. "While such worlds exhibit climates that are very different from Earth’s, many will still be suitable for both simple and advanced forms of water-dependent life."

So there is no reason to eliminate Earth-like planets with more tilt than Earth from future searches for life beyond the solar system. "We have one planet and we have a lot of species on this planet, but it is only one data point," says Williams. "Maybe one day we will figure out everything about life on our own planet, but no where near what is possible elsewhere."



The National Science Foundation supported this work.

The International Journal of Astrobiology, founded in 2002, is published by Cambridge University Press. The editors are Dr. Simonj Mitton (Cambridge) smitton@cambridge.org and Dr. Lynn Rothschild (NASA-Ames) Irothschild@mail.arc.nasa.gov.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>