Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Scientists Develop Novel Way to Screen Molecules Using Conventional CDs and Compact Disk Players

19.08.2003


Graphic showing how molecules attached to CDs in new technique can screen for proteins

Chemists at the University of California, San Diego have developed a novel method of detecting molecules with a conventional compact disk player that provides scientists with an inexpensive way to screen for molecular interactions and a potentially cheaper alternative to medical diagnostic tests.

A paper detailing their development will appear this week in an advance on-line edition of the Journal of Organic and Biomolecular Chemistry and in the printed journal’s September 21st issue.

“Our immediate goal is to use this new technology to solve basic scientific questions in the laboratory,” says Michael Burkart, an assistant professor of chemistry and biochemistry at UCSD and a coauthor of the paper. “But our eventual hope is that there will be many other applications. Our intention is to make this new development as widely available as possible and to see where others take the technology.”

Burkart and James La Clair, a visiting scholar in Burkart’s laboratory who initially developed and patented the technique, said that since scientific laboratories often rely on laser light to detect molecules, it made sense to them to design a way to detect molecules using the most ubiquitous laser on the planet--the CD player.

“The CD is by far the most common media format in our society on which to store and read information,” says La Clair. “It’s portable, you can drop it on the floor and it doesn’t break. It’s easy to mass produce. And it’s inexpensive.”

Their technique takes advantage of the tendency for anything adhering to the CD surface to interfere with a laser’s ability to read digital data burned onto the CD.

“We developed a method to identify biological interactions using traditional compact disk technology,” explains La Clair, who provided the patent rights to the method to UCSD. “Using inkjet printing to attach molecules to the surface of a CD, we identified proteins adhering to these molecules by their interaction with the laser light when read by a CD player.”

While usually anything, like a scratch on the CD surface, that would interfere with the detection of the bits of information encoded on a CD would be a drawback, the UCSD researchers actually exploited this error to detect molecules.

“That’s the novelty of this,” Burkart points out. “We are actually using the error to get our effect.”

The typical CD consists of a layer of metal sandwiched between a layer of plastic and a protective lacquer coating. When a CD is burned, a laser creates pits in the metal layer. A CD player uses a laser to translate the series of pits and intervening smooth surface into the corresponding zeros and ones that make up the bits of digital information.

To do molecular screening, the researchers took a CD encoded with digital data, and enhanced the chemical reactivity of the plastic on the readable surface. They then added molecules they wanted to attach to this surface to the empty ink wells of an inkjet printer cartridge and used the printer to “print” the molecules onto the CD. This resulted in a CD with molecules bound to its readable surface in specific locations relative to the pits in the metal layer of the CD encoding the digital information. When the CD with these molecules attached is placed in a CD player, the laser detects a small error in the digital code relative to what is read from the CD without the molecules attached.

To detect proteins or other large molecules in a solution like a blood sample, the modified CD is allowed to react with the sample solution. Like a key that only fits in a certain lock, some proteins bind to specific target molecules. Thus, specific molecules on the surface of a CD can be used to “go fishing” for certain proteins in a sample. The attachment of these proteins will introduce further errors into the reading of the CD. Furthermore, since the molecules on the surface of the CD are at known locations relative to the bits of encoded information, the errors tell the researchers what molecules have attached to their target protein and, thus, whether or not that protein is present in the sample.

“James has even done this using CDs with music, like Beethoven’s Fifth Symphony,” says Burkart. “And you can actually hear the errors.”

“How many people on this planet can actually hear a molecule attached to another molecule?” asks La Clair.

While a few bugs need to be ironed out before the technique can be used to accurately quantify the amount of a given protein in solution, Burkart plans to apply it immediately to help him screen for new compounds in his natural products chemistry research laboratory. Compared to the $100,000 price tag for a fluorescent protein chip reader, he points out, a CD player costs as little as $25.

The researchers envision many other potential applications for this technology outside the laboratory, particularly in the development of inexpensive medical diagnostic tests, now beyond the means of many people around the world, particularly in developing countries.

“In theory, anyone who has a computer with a CD drive could do medical tests in their own home,” says La Clair.

The researchers hope that by openly publishing their development in the scientific literature, others will customize the technology in a variety of ways, eventually leading to a wide range of inexpensive new diagnostic kits and other beneficial

products.

“We plan to make this fully available and see what people come up with,” says Burkart.

Sherry Seethaler | UCSD
Further information:
http://ucsdnews.ucsd.edu/newsrel/science/CDdetector.htm
http://discode.ucsd.edu/
http://www.rsc.org/Publishing/Journals/cs/index.asp

More articles from Interdisciplinary Research:

nachricht Start of work for the world's largest electric truck
20.04.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>