Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use lab cultures to create robotic ’semi-living artist’

09.07.2003


Working from their university labs in two different corners of the world, U.S. and Australian researchers have created what they call a new class of creative beings, “the semi-living artist” – a picture-drawing robot in Perth, Australia whose movements are controlled by the brain signals of cultured rat cells in Atlanta.


The robotic drawing arm operates based on the neural activity of a few thousand rat neurons placed in a special petri dish that keeps the cells alive.


Researchers are using a Multi-Electrode Array (MEA) to electrically stimulate neurons and also record the electrical activity of the neurons that are grown inside the cylinder area.



Gripping three colored markers positioned above a white canvas, the robotic drawing arm operates based on the neural activity of a few thousand rat neurons placed in a special petri dish that keeps the cells alive. The dish, a Multi-Electrode Array (MEA), is instrumented with 60 two-way electrodes for communication between the neurons and external electronics. The neural signals are recorded and sent to a computer that translates neural activity into robotic movement.

The network of brain cells, located in Professor Steve Potter’s lab at the Georgia Institute of Technology in Atlanta, and the mechanical arm, located in the lab of Guy Ben-Ary at the University of Western Australia in Perth, interact in real-time through a data exchange system via an Internet connection between the robot and the brain cells.


And while the robot’s drawings won’t put any artists out of business (picture the imaginative scribbling of a three-year-old), the semi-living artist’s work has a deeper significance. The team hopes to bridge the gap between biological and artificial systems to produce a machine capable of matching the intelligence of even the simplest organism.

“We’re attempting to create an entity that over time will evolve, learn, and express itself through art,” said Potter, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Potter and his team in the Laboratory for Neuroengineering at Georgia Tech began collaborating with Ben-Ary’s team at Western Australia in 2002. They call the robot “MEART,” which stands for multi-electrode array art. The project combines the technology of multi-electrode arrays at Potter’s lab with the robotic and artistic ingenuity of the team at Western Australia, called the “SymbioticA Research Group.”

At the time, Ben-Ary and his group were conducting research into meshing biological technology and artistry in a project called “Fish & Chips.” In that project, the team used music to stimulate electrical activity from a few fish neurons cultured on silicon chips, which in turn controlled a robotic arm.

“The goals are both to learn more about how brains work and to apply what is learned to designing fundamentally different types of artificial computing systems,” said Ben-Ary, who directs the Image Acquisition and Analysis Facility in the School of Anatomy and Human Biology at Western Australia.

Meanwhile, Potter’s group was already connecting cultures containing living neurons to computers using multi-electrode arrays that stimulate and record mammalian neurons. Most notably, the group developed the first robotic device whose movements are controlled by a cultured neural network capable of adaptive behavior and learning. They call the hybrid robot a “Hybrot.”

The neural activity recorded by the electrodes is transmitted over a two-way communication system and processed both in Atlanta and Perth to control the robotic drawing arm. Depending on how the neuro-electrical activity fires, the robotic arm will draw on a portion of the canvas or choose how many colored markers to use at one time and which colors it will use.

Central to the experiments is Potter’s belief that over time the teams will be able to establish a cultured in vitro network system that learns like the living brains in people and animals do. To achieve that, the information from the robot’s sensors is sent back through the system to the cultured network of cells in the form of electrical stimuli. By closing the loop, the group hopes the robot will learn something about itself and its environment.

“I hope that this merging of art and science will get the artists thinking about our science, and the scientists thinking about what is art and what is the minimum needed to make a creative entity,” Potter said. “On the science side, I hope that we can look at the drawings it makes and see some evidence of learning. Then we can scrutinize the cultured network under the microscope to help understand the learning process at the cellular level.”

At the University of Western Australia, the SymbioticA Research Group is managed by Oron Catts and directed by Professors Miranda Grounds and Stuart Bunt in the School of Anatomy and Human Biology. Phil Gamblen developed the robotic arm.

Note: The semi-living artist will be on display at “ArtBots: The Robot Talent Show” (http://artbots.org) in New York City July 12 and 13 at the Eyebeam Gallery.

Larry Bowie | Georgia Tech
Further information:
http://www.gatech.edu/news-room/release.php?id=160

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>