Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use lab cultures to create robotic ’semi-living artist’

09.07.2003


Working from their university labs in two different corners of the world, U.S. and Australian researchers have created what they call a new class of creative beings, “the semi-living artist” – a picture-drawing robot in Perth, Australia whose movements are controlled by the brain signals of cultured rat cells in Atlanta.


The robotic drawing arm operates based on the neural activity of a few thousand rat neurons placed in a special petri dish that keeps the cells alive.


Researchers are using a Multi-Electrode Array (MEA) to electrically stimulate neurons and also record the electrical activity of the neurons that are grown inside the cylinder area.



Gripping three colored markers positioned above a white canvas, the robotic drawing arm operates based on the neural activity of a few thousand rat neurons placed in a special petri dish that keeps the cells alive. The dish, a Multi-Electrode Array (MEA), is instrumented with 60 two-way electrodes for communication between the neurons and external electronics. The neural signals are recorded and sent to a computer that translates neural activity into robotic movement.

The network of brain cells, located in Professor Steve Potter’s lab at the Georgia Institute of Technology in Atlanta, and the mechanical arm, located in the lab of Guy Ben-Ary at the University of Western Australia in Perth, interact in real-time through a data exchange system via an Internet connection between the robot and the brain cells.


And while the robot’s drawings won’t put any artists out of business (picture the imaginative scribbling of a three-year-old), the semi-living artist’s work has a deeper significance. The team hopes to bridge the gap between biological and artificial systems to produce a machine capable of matching the intelligence of even the simplest organism.

“We’re attempting to create an entity that over time will evolve, learn, and express itself through art,” said Potter, a professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Potter and his team in the Laboratory for Neuroengineering at Georgia Tech began collaborating with Ben-Ary’s team at Western Australia in 2002. They call the robot “MEART,” which stands for multi-electrode array art. The project combines the technology of multi-electrode arrays at Potter’s lab with the robotic and artistic ingenuity of the team at Western Australia, called the “SymbioticA Research Group.”

At the time, Ben-Ary and his group were conducting research into meshing biological technology and artistry in a project called “Fish & Chips.” In that project, the team used music to stimulate electrical activity from a few fish neurons cultured on silicon chips, which in turn controlled a robotic arm.

“The goals are both to learn more about how brains work and to apply what is learned to designing fundamentally different types of artificial computing systems,” said Ben-Ary, who directs the Image Acquisition and Analysis Facility in the School of Anatomy and Human Biology at Western Australia.

Meanwhile, Potter’s group was already connecting cultures containing living neurons to computers using multi-electrode arrays that stimulate and record mammalian neurons. Most notably, the group developed the first robotic device whose movements are controlled by a cultured neural network capable of adaptive behavior and learning. They call the hybrid robot a “Hybrot.”

The neural activity recorded by the electrodes is transmitted over a two-way communication system and processed both in Atlanta and Perth to control the robotic drawing arm. Depending on how the neuro-electrical activity fires, the robotic arm will draw on a portion of the canvas or choose how many colored markers to use at one time and which colors it will use.

Central to the experiments is Potter’s belief that over time the teams will be able to establish a cultured in vitro network system that learns like the living brains in people and animals do. To achieve that, the information from the robot’s sensors is sent back through the system to the cultured network of cells in the form of electrical stimuli. By closing the loop, the group hopes the robot will learn something about itself and its environment.

“I hope that this merging of art and science will get the artists thinking about our science, and the scientists thinking about what is art and what is the minimum needed to make a creative entity,” Potter said. “On the science side, I hope that we can look at the drawings it makes and see some evidence of learning. Then we can scrutinize the cultured network under the microscope to help understand the learning process at the cellular level.”

At the University of Western Australia, the SymbioticA Research Group is managed by Oron Catts and directed by Professors Miranda Grounds and Stuart Bunt in the School of Anatomy and Human Biology. Phil Gamblen developed the robotic arm.

Note: The semi-living artist will be on display at “ArtBots: The Robot Talent Show” (http://artbots.org) in New York City July 12 and 13 at the Eyebeam Gallery.

Larry Bowie | Georgia Tech
Further information:
http://www.gatech.edu/news-room/release.php?id=160

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>