Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers combine electronics with living cell to create potential toxicity sensor

10.06.2003


The micro-electromechanical device can function as a "canary on a chip" to signal cell death. (Photo courtesy of Yong Huang)


In experiments conducted at the University of California, Berkeley, researchers have found a way to tap into the telltale electrical signals that mark cell death, opening the door to the creation of a "canary on a chip" that can be used to sound the alarm of a biochemical attack or test drug toxicity on human tissue.

In a study appearing in the June 15 issue of Sensors and Actuators, researchers used a microchip to electrically determine cell viability by detecting changes in the electrical resistance of a cell membrane within milliseconds after it is exposed to a toxic agent. They found that after a cell is exposed to a toxin, its electrical resistance experiences a quick spike before dropping dramatically when it dies.

"The beauty of the device is that it detects the viability of a cell directly and instantaneously," said Boris Rubinsky, professor of mechanical engineering and bioengineering at UC Berkeley and co-author of the study, which is now available online. "This MEMS (micro-electromechanical) device will be invaluable in the detection of a biochemical attack because there you don’t have the luxury of time and analysis. It’s a new technology that will act like a canary on a chip."



The study is a continuation of the bionic chip research, part of UC Berkeley’s Center for Information Technology Research in the Interest of Society, pioneered by Rubinsky and his former graduate student, Yong Huang, who received his PhD in mechanical engineering in 2001.

Three years ago, Rubinsky and Huang invented a chip that merges a living biological cell with electronic circuitry. The bionic chip also exemplifies the type of advances made possible through the campus’s Health Sciences Initiative, which combines research in diverse disciplines to launch innovations in health-related fields. The chip has since been patented by UC Berkeley and exclusively licensed to Excellin Life Sciences, a Milpitas-based biotech startup.

"This would benefit applications that rely upon the knowledge of whether a cell is alive or dead," said Huang, lead author of the current study and now the chief science officer of Excellin. "It has implications for use as a biochemical sensor that soldiers could wear on a nametag or that is stationed as a remote sensor in the field. Because this is a MEMS-based single-cell analysis technology, it’s primed for miniaturization."

In this year’s new design of the bionic chip, a cell essentially lives in a nutrient-rich culture between two electrodes on a silicon wafer. The electrodes continuously probe the cell membrane and track the amount of electrical current that is able to pass. An intact membrane will not allow ions to pass through, except in very constrained conditions.

"One of the properties of a dead cell is that the membrane becomes leaky," said Rubinsky. "It occurred to us that when the cell membrane breaks, it would allow various ions to move through the cell membrane and make a circuit that can be easily measured."

This change in membrane permeability forms the basis for traditional cell viability assays that use colorimetric or fluorescent dyes. The molecules of the dye can only pass through the membrane of dead cells. Drug researchers investigating a chemical’s toxicity to cancer cells, for example, would look to see whether the dead cells appeared fluorescent through a microscope. The researchers used the traditional assays to help calibrate the bionic chip.

While the bionic chip has potential as a biochemical warning device, its possible use as a replacement for the traditional fluorescent dye assay may have more immediate impact, said Huang.

Excellin is pursuing the use of the bionic chip as a tool for basic research on cell death and as a drug toxicity assay.

Huang pointed out that the fluorescent dye assay only tells whether cells are alive or dead, shedding little light on what happens to the cell as it dies. The dyes also lack the sensitivity to measure what happens in a single cell.

"With the bionic chip, the cell produces a dynamic electrical signature so you can monitor the cell death process in real time," said Huang. "This has not been done before, particularly on a single cell level."

The researchers say the amount of cell membrane damage relates to the degree of ionic current, so the larger the damage, the greater the change in electrical resistance.

"Not only can you tell when a cell dies or not, you know to what degree there is membrane impairment by comparing the electric signals," said Huang. "That’s very difficult to do without our technology."

Using electrical resistance to measure cell death is also more efficient than using fluorescent dyes, the researchers said.

"The traditional protocol requires the addition of a dye that has been prepared and incubated, it requires that the dye gets into the cell, and it requires a measurement that is lengthy and complicated," said Rubinsky. "With the bionic chip, you don’t need to add anything, and reactions happen very fast. You simply need two electrodes that measure the current as opposed to some expensive dyes and expensive measurement devices. It’s orders of magnitude faster. It’s a matter of milliseconds or seconds compared with half an hour or more."

Other co-authors of the paper are Navdeep Sekhon and Ning Chen, former students at UC Berkeley’s Department of Mechanical Engineering; and James Borninski, vice president of product development at Excellin.

Sarah Yang | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2003/06/09_toxic.shtml

More articles from Interdisciplinary Research:

nachricht Body Talk: A New Crowdshaping Technology Uses Words to Create Accurate 3D Body Models
27.07.2016 | Max-Planck-Institut für Intelligente Systeme

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>