Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biocompatibility to Ensure Body Friendly Parts

06.06.2003


In recent years, the solution to the problem of diseased or damaged organs has been to replace the old with the new. By taking tissue from either a patient or a donor, surgeons have transplanted this to the damaged area and given many people a new lease of life.

The method is not without limitations, however. Issues such as the availability of donor organs and the need to use drugs to prevent the immune system rejecting the “foreign” tissue have prompted research into alternative ways to deal with the problem.

The focus is now changing from transplantation to implantation; replacing damaged tissues with natural and synthetic materials that have been altered so that they can take their place next to living tissues within our bodies without fear of rejection.



These implants or biomaterials can range from hip joint replacement to artificial heart valves and even to contact lenses. The extent to which an implant can successfully take over the job of a diseased tissue depends mainly on how well the surface of the biomaterial interacts with the cells of the body; its biocompatibility.

Researchers at the Conway Institute of Biomolecular and Biomedical Research, University College Dublin in collaboration with colleagues at the Institute for Surface Chemistry in Stockholm are looking at how cells react at a molecular level with different surface materials. In an article published last week in an American scientific journal, Proceedings of the National Academy of Sciences, this multidisciplinary team have shown not only how biomaterials interact with cells but also how they can be improved so that cells want to interact with the surface material.

Led by Dr. William Gallagher of the Conway Institute and supported by Enterprise Ireland and the Health Research Board, this research team are using advanced genetic technology to examine several thousand genes within human cells as they interact with a range of biomaterial surfaces. It is thought that this research will have significant implications in predicting whether a patient is likely to reject an implant and helping to decide the type of implant that is best suited to the patient.

Elaine Quinn | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/100/11/6331

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>