Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biocompatibility to Ensure Body Friendly Parts

06.06.2003


In recent years, the solution to the problem of diseased or damaged organs has been to replace the old with the new. By taking tissue from either a patient or a donor, surgeons have transplanted this to the damaged area and given many people a new lease of life.

The method is not without limitations, however. Issues such as the availability of donor organs and the need to use drugs to prevent the immune system rejecting the “foreign” tissue have prompted research into alternative ways to deal with the problem.

The focus is now changing from transplantation to implantation; replacing damaged tissues with natural and synthetic materials that have been altered so that they can take their place next to living tissues within our bodies without fear of rejection.



These implants or biomaterials can range from hip joint replacement to artificial heart valves and even to contact lenses. The extent to which an implant can successfully take over the job of a diseased tissue depends mainly on how well the surface of the biomaterial interacts with the cells of the body; its biocompatibility.

Researchers at the Conway Institute of Biomolecular and Biomedical Research, University College Dublin in collaboration with colleagues at the Institute for Surface Chemistry in Stockholm are looking at how cells react at a molecular level with different surface materials. In an article published last week in an American scientific journal, Proceedings of the National Academy of Sciences, this multidisciplinary team have shown not only how biomaterials interact with cells but also how they can be improved so that cells want to interact with the surface material.

Led by Dr. William Gallagher of the Conway Institute and supported by Enterprise Ireland and the Health Research Board, this research team are using advanced genetic technology to examine several thousand genes within human cells as they interact with a range of biomaterial surfaces. It is thought that this research will have significant implications in predicting whether a patient is likely to reject an implant and helping to decide the type of implant that is best suited to the patient.

Elaine Quinn | alfa
Further information:
http://www.pnas.org/cgi/content/abstract/100/11/6331

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>