Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual reality helps scientists to see how we see

04.06.2003


Oxford scientists are using the latest virtual reality technology to study how we perceive the world in 3D. The “immersive virtual reality” used by the Virtual Reality Research Group at Oxford University allows subjects to walk around or look up and down while what they see through a headset changes accordingly – they can explore the virtual environment by literally walking around. Meanwhile, the scientists monitor how they are perceiving the dimensions of their ‘Matrix’-style world.



The researchers want to investigate how our visual system converts a 2D image on the retina into a 3D representation of the world – especially when we move around. Dr Andrew Glennerster, who heads the research group, explains: “Normally, as we move around, our eyes jump from object to object about three times a second, yet we are quite unaware of any change. We are also unaware of the swirling patterns of motion that are generated on the retina as we move in a static environment. How does the brain make sense of all this rapidly changing visual information?” By controlling that changing visual information using immersive virtual reality, the researchers can see how the brain reacts to specific visual cues.

In the experiments, visual environments are experienced in real time as the subject, wearing a headset projecting images to each eye, moves around. “The equipment tracks the observer’s head, arm and eye movements and changes the images the eyes see through the headset so as to mimic the changes that would occur if they were exploring a real environment,” explains Dr Glennerster. Previous research into 3D vision has usually been done with the observer’s head clamped in one position.


The virtual reality system can also play tricks on the observer, to study how the brain reacts to controlled variations. In one experiment, the scene gradually expands as the observer walks through it. The researchers have found the observer’s assumption that the room has stayed the same size is so strong that it seems to overcome evidence from motion parallax and binocular disparity (the normal visual cues for shape and size): people can be fooled into thinking two objects are the same size even when one is four times larger than the other.

The project draws together various disciplines, with psychologists and physiologists working in collaboration with engineers in the robotics group at Oxford. The research is in relatively early stages, but it could yield exciting results. “Very few experiments have ever been carried out that test how the brain represents 3D while a person is moving,” says Dr Glennerster. “This forms part of a bigger question troubling neuroscience – how is information from different times and places linked together in the brain in a coherent way?”

Ruth Collier | alfa
Further information:
http://www.physiol.ox.ac.uk

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>