Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual reality helps scientists to see how we see

04.06.2003


Oxford scientists are using the latest virtual reality technology to study how we perceive the world in 3D. The “immersive virtual reality” used by the Virtual Reality Research Group at Oxford University allows subjects to walk around or look up and down while what they see through a headset changes accordingly – they can explore the virtual environment by literally walking around. Meanwhile, the scientists monitor how they are perceiving the dimensions of their ‘Matrix’-style world.



The researchers want to investigate how our visual system converts a 2D image on the retina into a 3D representation of the world – especially when we move around. Dr Andrew Glennerster, who heads the research group, explains: “Normally, as we move around, our eyes jump from object to object about three times a second, yet we are quite unaware of any change. We are also unaware of the swirling patterns of motion that are generated on the retina as we move in a static environment. How does the brain make sense of all this rapidly changing visual information?” By controlling that changing visual information using immersive virtual reality, the researchers can see how the brain reacts to specific visual cues.

In the experiments, visual environments are experienced in real time as the subject, wearing a headset projecting images to each eye, moves around. “The equipment tracks the observer’s head, arm and eye movements and changes the images the eyes see through the headset so as to mimic the changes that would occur if they were exploring a real environment,” explains Dr Glennerster. Previous research into 3D vision has usually been done with the observer’s head clamped in one position.


The virtual reality system can also play tricks on the observer, to study how the brain reacts to controlled variations. In one experiment, the scene gradually expands as the observer walks through it. The researchers have found the observer’s assumption that the room has stayed the same size is so strong that it seems to overcome evidence from motion parallax and binocular disparity (the normal visual cues for shape and size): people can be fooled into thinking two objects are the same size even when one is four times larger than the other.

The project draws together various disciplines, with psychologists and physiologists working in collaboration with engineers in the robotics group at Oxford. The research is in relatively early stages, but it could yield exciting results. “Very few experiments have ever been carried out that test how the brain represents 3D while a person is moving,” says Dr Glennerster. “This forms part of a bigger question troubling neuroscience – how is information from different times and places linked together in the brain in a coherent way?”

Ruth Collier | alfa
Further information:
http://www.physiol.ox.ac.uk

More articles from Interdisciplinary Research:

nachricht Scientists develop machine-learning method to predict the behavior of molecules
11.10.2017 | New York University

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>