Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual reality helps scientists to see how we see

04.06.2003


Oxford scientists are using the latest virtual reality technology to study how we perceive the world in 3D. The “immersive virtual reality” used by the Virtual Reality Research Group at Oxford University allows subjects to walk around or look up and down while what they see through a headset changes accordingly – they can explore the virtual environment by literally walking around. Meanwhile, the scientists monitor how they are perceiving the dimensions of their ‘Matrix’-style world.



The researchers want to investigate how our visual system converts a 2D image on the retina into a 3D representation of the world – especially when we move around. Dr Andrew Glennerster, who heads the research group, explains: “Normally, as we move around, our eyes jump from object to object about three times a second, yet we are quite unaware of any change. We are also unaware of the swirling patterns of motion that are generated on the retina as we move in a static environment. How does the brain make sense of all this rapidly changing visual information?” By controlling that changing visual information using immersive virtual reality, the researchers can see how the brain reacts to specific visual cues.

In the experiments, visual environments are experienced in real time as the subject, wearing a headset projecting images to each eye, moves around. “The equipment tracks the observer’s head, arm and eye movements and changes the images the eyes see through the headset so as to mimic the changes that would occur if they were exploring a real environment,” explains Dr Glennerster. Previous research into 3D vision has usually been done with the observer’s head clamped in one position.


The virtual reality system can also play tricks on the observer, to study how the brain reacts to controlled variations. In one experiment, the scene gradually expands as the observer walks through it. The researchers have found the observer’s assumption that the room has stayed the same size is so strong that it seems to overcome evidence from motion parallax and binocular disparity (the normal visual cues for shape and size): people can be fooled into thinking two objects are the same size even when one is four times larger than the other.

The project draws together various disciplines, with psychologists and physiologists working in collaboration with engineers in the robotics group at Oxford. The research is in relatively early stages, but it could yield exciting results. “Very few experiments have ever been carried out that test how the brain represents 3D while a person is moving,” says Dr Glennerster. “This forms part of a bigger question troubling neuroscience – how is information from different times and places linked together in the brain in a coherent way?”

Ruth Collier | alfa
Further information:
http://www.physiol.ox.ac.uk

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>