Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Collaboration at EMSL produces innovative mass spectrometer

02.06.2003


The future of proteomics is in good hands with one of the most powerful and versatile mass spectrometers being developed by scientists and engineers from the William R. Wiley Environmental Molecular Sciences Laboratory.



The high-throughput Fourier transform ion cyclotron resonance (FTICR) mass spectrometer and automated liquid chromatography (LC) system is a breakthrough in mass spectrometry capable of improving the understanding of protein production, function and interactions at the cellular level and beyond.

Proteomics is the study of proteins in the human genome that are made and change within a cell over time as the cells respond to disease or changes in their surrounding environment.


"The success of the high- throughput FTICR mass spectrometer and the automation system heralds the next generation of proteomics research," said Harold Udseth, technical leader of EMSL’s High Performance Mass Spectrometry Facility.

Mass spectrometers are used to weigh atoms and molecules. This can be done with a precision of one part in five million, which, when applied to the human cell, will enable scientists to learn a great deal about how the cell works. "And once scientists fully understand how human cells work, they can begin to work on methodically solving problems involving things that go wrong in a cell such as cancer," Udseth said.

"The signature of the newest, high-throughput FTICR is the high resolution and high mass measurement accuracy of the system," Udseth continued. "It does better than other mass spectrometers available in measuring the mass of peptides (small structural units obtained by cutting proteins into pieces). It offers such sensitivity and precision that scientists can detect hundreds of thousands of peptide species in a single analysis." Identifying peptides is an important part of proteomics research to determine the role that proteins play in cells and living systems. Researchers expect that more than a million peptides are available in the proteins expressed within human cells.

The mass spectrometer project took nine months of concerted effort by a diverse team composed of scientists from the High Performance Mass Spectrometry Facility and engineers at the EMSL Instrument Development Laboratory (IDL), both of whom brought diverse talent and experience to the table. "It’s essential to get the right people in the right place, people who have a desire to work together for a common goal," Udseth said. "In this case, everyone was inspired by the work."

The project required the replacement of the instrument’s commercial ion manipulation optics with EMSL’s patented ion funnel technology, as well as the design, development and construction of an automated LC system that incorporates a commercial autosampler and PNNL’s high-pressure LC technology. Software written by researchers at EMSL is used to control the LC system and integrate it into a single operating system.

"We worked closely with Harold and his staff to understand and provide technical support to overcome the unique challenges of developing this cutting-edge research equipment," said Gordon Anderson, manager of the IDL. The IDL is an integral part of EMSL and includes staff with expertise in electronic circuit design and fabrication as well as software development. "Finding that common, underlying language between scientists and engineers paved the way to a satisfying collaboration," Anderson said.


A multidisciplinary team composed of scientists and engineers was key to the successful development of the cutting-edge, high-throughput Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The research tool significantly accelerates proteome analysis and provides accuracy and depth never before reached in proteome studies. This ability greatly enhances the understanding of protein production, function and interactions at the cellular level.

Greg Koller | DOE/PNNL
Further information:
http://www.emsl.pnl.gov
http://www.emsl.pnl.gov:2080/docs/idl/home.html
http://www.pnl.gov/breakthroughs/winter-spring03/special_report3.stm#fticr

More articles from Interdisciplinary Research:

nachricht Investigating cell membranes: researchers develop a substance mimicking a vital membrane component
25.05.2018 | Westfälische Wilhelms-Universität Münster

nachricht New approach: Researchers succeed in directly labelling and detecting an important RNA modification
30.04.2018 | Westfälische Wilhelms-Universität Münster

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>