Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WHOI Scientists Respond to Buzzards Bay Oil Spill

08.05.2003


Woods Hole Oceanographic Institution (WHOI) scientists from diverse disciplines have responded to the April 27 spill of nearly 15,000 gallons of No. 6 fuel oil into Buzzards Bay, drawing on decades of experience studying the effects of oil spills on the marine and coastal environment.


An oil slick floats in Buzzards Bay as raindrops tap the waters surface. Photos by C. Linder, WHOI)


Robert Nelson inspects one of the oil samples.



Marine chemists have collected dozens of oil samples spilled into Buzzards Bay by the barge Bouchard 120 to determine the chemical composition of the petroleum spilled and its potential toxicity. Biologists and graduate students are participating in other aspects of the spill response, including assisting medical teams trying to rehabilitate oil-soaked wildlife. Teams will continue sampling and assisting various recovery efforts as part of the Institution¹s long-term interest and involvement in oil pollution research and its impact on society.

Plans are underway for Institution staff who have worked on the inputs, fates and effects of oil in the marine environment through the past 35 years to brief local officials in communities surrounding Buzzards Bay about the current state of knowledge on oil pollution in the marine environment in general, and what marine scientists have learned over the years about oil spills since the 1969 Buzzards Bay oil spill off West Falmouth. That spill, approximately 175,000 gallons of No. 2 fuel oil, is considered a baseline for studies of the long-term fate and effects of petroleum hydrocarbons in marine sediments. WHOI scientists have been studying the West Falmouth site regularly since 1969 and still find residues of the oil in salt marsh sediments.


Assistant Scientist Christopher Reddy of the Institution’s Marine Chemistry and Geochemistry Department and colleagues Robert Nelson, Li Xu and Emily Peacock have been sampling the recent spill of No. 6 fuel oil from the barge Bouchard 120 since the spill was first reported. Approximately 20 water samples and several floating pancakes of oil were collected April 28 as far south as Cuttyhunk and as far north as Cleveland Ledge. The team collected additional water and pancake oil samples April 30 and May 1, and more sampling is planned.

The team is using traditional gas chromatography, an analytical chemistry method that partially separates and identifies the complex nature of chemicals in oil, and a novel more powerful separation and identification technique called comprehensive two-dimensional gas chromatography, available at only a few laboratories in the country. Reddy and Nelson found that many of the compounds in the oil are the same as those found in the 1969 West Falmouth and 1974 Windsor Cove oil spills in Buzzards Bay.

The abundance and type of compounds comprising No. 6 fuel oil can vary dramatically. The first sample contained a large amount of compounds called naphthalenes, which are often associated with the more toxic fractions of petroleum. These compounds are also slightly water soluble, meaning that they can dissolve into the water column, even though most of the oil appears to be floating. "We have confirmed in the laboratory that some of the naphthalenes in this No. 6 fuel oil can dissolve in water," Reddy said.

Additional chemical analyses have been performed on the oil samples since April 28, and Reddy and team have provided data to the organized response team headed by the National Oceanic and Atmospheric Administration (NOAA). Under the Oil Spill Act of 1990, oil spill response is coordinated between a number of state and federal agencies.

Biology Department Graduate Student Eric Montie has been assisting in the sea bird rehabilitation efforts. Among the nearly 60 birds currently in rehabilitation are common loons, red-throated loons, oystercatcher, scoters, eiders and Northern gannet although most are common loons. Tasks include weighing animals, taking temperatures, taking feather and swab samples for analysis, giving medications and feeding via intubation.

The Institution, part of the Cape Cod Stranding Network, has a computerized tomographic or CT 2D/3D scanner, similar to those found at Massachusetts General Hospital, that is available for diagnostic studies of marine life including seabirds. WHOI is the only US oceanographic research facility with a CT scanner and has used the technology to advance fundamental research questions on both terrestrial and aquatic animals.

WHOI is a private, independent marine research and engineering, and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five departments, interdisciplinary institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu/media/oilspill.html

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>