Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature inspires DNA/protein

25.03.2003


A new generation of nanoscale devices are being developed based on inspiration found in nature. Grazyna Sroga, a postdoctoral researcher at Rensselaer Polytechnic Institute, is using DNA and related proteins to construct microscopic structures that may one day conduct electricity, deliver drugs, boost computer memory, or sense the presence or absence of chemicals. She is working in the laboratory of Jonathan S. Dordick, the Howard P. Isermann ’42 professor of chemical engineering.



Sroga is presenting her research at the 225th national meeting of the American Chemical Society, held March 23-27 in New Orleans, La.

Taking Advantage of Years of Evolution


Dordick and Sroga use a combination of hybrid proteins to manipulate normally linear DNA strands into unusual shapes, including three-dimensional cubes. These new shapes can then be encouraged to self-assemble based on molecular interactions. The ability of these bio-inspired nanostructures to spontaneously assemble saves researchers’ time and effort, representing an advantage over other approaches to nanoproduction that do not utilize biologic materials.

This research (funded by the Biotech Research and Development Corporation and the National Science Foundation, through Rensselaer’s Nanoscale Science and Engineering Center) is still in its infancy. Constructing new devices based on biological models, however, may mean that potential pitfalls have already been worked out over years of natural evolution. When it comes to design, "it is likely that nature does it better," says Sroga. Tools constructed of hybrid biomaterials, for example, may be hypoallergenic, making medical application of such devices less likely to lead to rejection by the body’s systems.


About Nanotechnology at Rensselaer
In September 2001, the National Science Foundation (NSF) selected Rensselaer Polytechnic Institute as one of six sites nationwide for a new Nanoscale Science and Engineering Center (NSEC). Center researchers are part of a high-priority national effort to work at the atomic and molecular level to alter the most basic structure of materials. The mission of the center is to integrate research, education, and technology dissemination, and serve as a national resource for fundamental knowledge and applications in the directed assembly of nanostructures. The center’s goals include discovering novel pathways to assemble functional multiscale nanostructures, exciting and educating students of all ages in nanoscale science and engineering, and working hand-in-hand with industry to develop nanotechnology for the benefit of society.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty members are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

CONTACT: Jonathan Dordick 518-276-2899; dordick@rpi.edu
Grazyna Sroga 518-276-2811; srogag@rpi.edu

CONTACT (During the ACS Meeting): The ACS press room 504-586-4650 (Morial Convention Center, room 280)


Joely Johnson | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>