Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature inspires DNA/protein

25.03.2003


A new generation of nanoscale devices are being developed based on inspiration found in nature. Grazyna Sroga, a postdoctoral researcher at Rensselaer Polytechnic Institute, is using DNA and related proteins to construct microscopic structures that may one day conduct electricity, deliver drugs, boost computer memory, or sense the presence or absence of chemicals. She is working in the laboratory of Jonathan S. Dordick, the Howard P. Isermann ’42 professor of chemical engineering.



Sroga is presenting her research at the 225th national meeting of the American Chemical Society, held March 23-27 in New Orleans, La.

Taking Advantage of Years of Evolution


Dordick and Sroga use a combination of hybrid proteins to manipulate normally linear DNA strands into unusual shapes, including three-dimensional cubes. These new shapes can then be encouraged to self-assemble based on molecular interactions. The ability of these bio-inspired nanostructures to spontaneously assemble saves researchers’ time and effort, representing an advantage over other approaches to nanoproduction that do not utilize biologic materials.

This research (funded by the Biotech Research and Development Corporation and the National Science Foundation, through Rensselaer’s Nanoscale Science and Engineering Center) is still in its infancy. Constructing new devices based on biological models, however, may mean that potential pitfalls have already been worked out over years of natural evolution. When it comes to design, "it is likely that nature does it better," says Sroga. Tools constructed of hybrid biomaterials, for example, may be hypoallergenic, making medical application of such devices less likely to lead to rejection by the body’s systems.


About Nanotechnology at Rensselaer
In September 2001, the National Science Foundation (NSF) selected Rensselaer Polytechnic Institute as one of six sites nationwide for a new Nanoscale Science and Engineering Center (NSEC). Center researchers are part of a high-priority national effort to work at the atomic and molecular level to alter the most basic structure of materials. The mission of the center is to integrate research, education, and technology dissemination, and serve as a national resource for fundamental knowledge and applications in the directed assembly of nanostructures. The center’s goals include discovering novel pathways to assemble functional multiscale nanostructures, exciting and educating students of all ages in nanoscale science and engineering, and working hand-in-hand with industry to develop nanotechnology for the benefit of society.

About Rensselaer
Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty members are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

CONTACT: Jonathan Dordick 518-276-2899; dordick@rpi.edu
Grazyna Sroga 518-276-2811; srogag@rpi.edu

CONTACT (During the ACS Meeting): The ACS press room 504-586-4650 (Morial Convention Center, room 280)


Joely Johnson | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>