Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MelTec Forms Alliance with Fraunhofer Institute FIT

21.01.2003


Next-Generation IT Platform for Topological Proteomics to be Created



MelTec GmbH and the Fraunhofer Institute for Applied Information Technology FIT today signed a collaboration agreement to develop an information technology platform for the management and interpretation of high-throughput experiments analysing protein networks of whole cells in situ, also known as topological proteomics or toponomics. MelTec continuously generates large data sets to decipher the toponome of cells and tissues by tracing out and interpreting the context of proteins in cells.

Under this agreement, FIT and MelTec will develop new software-based approaches to analyse and visualise protein networks, and then correlate that data with results from in-vitro and in-vivo experiments. Using MelTec’s robotic toponomics imaging technology in combination with FIT’s image management and proteomics software, they will create a bioinformatics platform for the systematic interpretation of these vast protein networks. The system will rapidly produce high quality results for understanding how proteins impact a drug’s effectiveness.


"Our Topological Proteomics technologies combine cell biology and bio-mathematical tools to visualize 3-Dimensional protein-networks at the cellular and subcellular level," said Walter Schubert, M.D., Founder and Chief Executive Officer of MelTec. "This new system has the potential to become a key technology that paves the way for a more systematic approach to understanding disease pathology and treatment, by looking at how protein networks in cells determine cellular function. The alliance with FIT will accelerate our discovery program."

"Large-scale image-based experiments require advanced information management approaches that combine storage, processing and interactive exploration capabilities," said Prof. Dr. Thomas Berlage, Institute Director at the Fraunhofer Institute for Applied Information Technology FIT. "Our alliance will allow us to create an integrated environment that enables biologists to quickly identify and validate functional aspects of living cells."

About MelTec
MelTec GmbH is a privately held biotechnology company specializing in using topological proteomics to identify mechanisms underlying disease pathology, drug targets and to prioritize lead compounds focused on immune-mediated disease, neurological disorders, cancer, and arteriosclerosis. MelTec’s proprietary robotic imaging technology, MELK (Multi-Epitope-Ligand-Kartographie), performs completely automated proteomic characterization of single cells, for hundreds of proteins simultaneously, thus identifying the proteomic fingerprint, or the topology, of individual cells, such as lymphocytes. Using its technology, MelTec believes that it can greatly accelerate pre-clinical research in the drug development process, and has already identified new targets and lead compounds in amyotrophic lateral sclerosis (ALS, Lou Gehrig’s Disease) and cancer.

About Fraunhofer FIT
The Fraunhofer Institute for Applied Information Technology FIT is one of the 56 institutes of the Fraunhofer Society in Germany. FIT investigates user-oriented information and cooperation systems, focusing on the interaction of actual work practices, organizational structure and processes, in close cooperation with its clients from industry and public administration. One major application area is life science, where diagnostic and therapeutic approaches are increasingly relying on image-based technologies and integrated computerized approaches. FIT is pursuing research on novel software systems that address the anatomical, physiological and molecular levels of life.


Alex Deeg | idw
Further information:
http://www.fit.fraunhofer.de/
http://www.meltec.de/

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>