Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MelTec Forms Alliance with Fraunhofer Institute FIT

21.01.2003


Next-Generation IT Platform for Topological Proteomics to be Created



MelTec GmbH and the Fraunhofer Institute for Applied Information Technology FIT today signed a collaboration agreement to develop an information technology platform for the management and interpretation of high-throughput experiments analysing protein networks of whole cells in situ, also known as topological proteomics or toponomics. MelTec continuously generates large data sets to decipher the toponome of cells and tissues by tracing out and interpreting the context of proteins in cells.

Under this agreement, FIT and MelTec will develop new software-based approaches to analyse and visualise protein networks, and then correlate that data with results from in-vitro and in-vivo experiments. Using MelTec’s robotic toponomics imaging technology in combination with FIT’s image management and proteomics software, they will create a bioinformatics platform for the systematic interpretation of these vast protein networks. The system will rapidly produce high quality results for understanding how proteins impact a drug’s effectiveness.


"Our Topological Proteomics technologies combine cell biology and bio-mathematical tools to visualize 3-Dimensional protein-networks at the cellular and subcellular level," said Walter Schubert, M.D., Founder and Chief Executive Officer of MelTec. "This new system has the potential to become a key technology that paves the way for a more systematic approach to understanding disease pathology and treatment, by looking at how protein networks in cells determine cellular function. The alliance with FIT will accelerate our discovery program."

"Large-scale image-based experiments require advanced information management approaches that combine storage, processing and interactive exploration capabilities," said Prof. Dr. Thomas Berlage, Institute Director at the Fraunhofer Institute for Applied Information Technology FIT. "Our alliance will allow us to create an integrated environment that enables biologists to quickly identify and validate functional aspects of living cells."

About MelTec
MelTec GmbH is a privately held biotechnology company specializing in using topological proteomics to identify mechanisms underlying disease pathology, drug targets and to prioritize lead compounds focused on immune-mediated disease, neurological disorders, cancer, and arteriosclerosis. MelTec’s proprietary robotic imaging technology, MELK (Multi-Epitope-Ligand-Kartographie), performs completely automated proteomic characterization of single cells, for hundreds of proteins simultaneously, thus identifying the proteomic fingerprint, or the topology, of individual cells, such as lymphocytes. Using its technology, MelTec believes that it can greatly accelerate pre-clinical research in the drug development process, and has already identified new targets and lead compounds in amyotrophic lateral sclerosis (ALS, Lou Gehrig’s Disease) and cancer.

About Fraunhofer FIT
The Fraunhofer Institute for Applied Information Technology FIT is one of the 56 institutes of the Fraunhofer Society in Germany. FIT investigates user-oriented information and cooperation systems, focusing on the interaction of actual work practices, organizational structure and processes, in close cooperation with its clients from industry and public administration. One major application area is life science, where diagnostic and therapeutic approaches are increasingly relying on image-based technologies and integrated computerized approaches. FIT is pursuing research on novel software systems that address the anatomical, physiological and molecular levels of life.


Alex Deeg | idw
Further information:
http://www.fit.fraunhofer.de/
http://www.meltec.de/

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>