Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA payloads feature on Space Shuttle research mission

16.01.2003


European scientists will be ‘turning off’ the effects of gravity during the STS-107 Space Shuttle research mission this month in order to gain a better understanding of processes in medicine, technology and science.


The image above shows the view from the Space Shuttle’s cabin towards the Spacehab science module during the 16-day Neurolab research mission in the spring of 1998.

Credits: NASA


STS-107 crew: Rick D. Husband (seated at front left), William McCool (seated at front right) , (standing from left) David Brown, Laurel Clark, Kalpana Chawla, Michel Anderson and Ilan Ramon.



Their investigations will be among some 80 experiments performed during a 16-day mission in Earth orbit to be launched from Cape Canaveral tomorrow.

Seven of the 31 payloads are sponsored by ESA, and the crew will work 24 hours a day in two alternating shifts on experiments covering astronaut health and safety, advanced technology development, and life and physical sciences.


The Shuttle mission is a dress rehearsal for routine research operations on board the International Space Station, currently being assembled in orbit. ESA’s involvement in STS-107 is the outcome of a barter agreement with NASA.

"Under the barter agreement, ESA has provided NASA with an Airbus Super Guppy to fly large International Space Station elements across the US and in exchange has the opportunity to fly 450 kg of microgravity payload on NASA Space Shuttle missions", explains Jörg Feustel-Büechl, ESA’s Director of Human Spaceflight.

Six of the seven ESA payloads will perform life or physical science experiments – the Advanced Protein Crystallisation Facility (APCF), the Advanced Respiratory Monitoring System (ARMS), Biobox, Biopack, the European Research in Space and Terrestrial Osteoporosis (ERISTO) facility, and the Facility for Adsorption and Surface Tension studies (FAST).

The seventh is a technology demonstration called the Combined 2 Phase Loop Experiment (COM2PLEX), which will test three new heat transfer systems for thermal control of instruments on satellites.

"STS-107 is a very important mission for Europe. It builds on our experience with Spacelab on dedicated Shuttle flights and will ultimately support longer, more ambitious research aboard the Space Station," said Marc Heppener, Head of ESA’s International Space Station Utilisation and Microgravity Promotion Division.

In addition to the research being performed already aboard the International Space Station while it is still being assembled, such Shuttle missions are important because they allow scientists and researchers to ‘turn off’ the effects of gravity and unmask basic phenomena that play key roles in biology, physics, and chemistry.

ESA’s scientific payloads are concentrated in a pressurised module known as Spacehab, located in the Shuttle’s payload bay and connected to the Shuttle crew compartment by a tunnel. The concept and the technology of Spacehab are derived from ESA’s Spacelab programme.

Europe has a long history of participation in Shuttle flights with an emphasis on microgravity research – from the early days of Spacelab to the more recent Neurolab.

ESA mission manager, Pasquale Di Palermo, describes the flight as "a valuable opportunity for Europe both to experiment in space and to prepare on the ground so as to be ready for full operations on board the Space Station".

The ESA payloads involve the crew in numerous activities – from straightforward activation of the experiments to all procedures involved in their in-orbit operation including, if necessary, repair.

For ARMS in particular, the crew are actually part of the experiment and have undergone intensive training to ensure that they are familiar with the equipment and can carry out medical tests on themselves.

ARMS, on its first ever flight, is designed for respiratory and cardiovascular monitoring in microgravity, allowing scientists to unveil the workings of a complex human system whose functions are normally masked by gravity.

By putting four crew members through a carefully controlled set of exercise and test routines before, during and after the mission, ARMS will measure changes caused by the absence of gravity in their pulmonary and cardiovascular functions.

After the STS-107 mission, ARMS will become a key ground research tool with exciting long-term prospects – from developing new medical diagnostic tools which may help doctors to determine physical fitness and even predict illness, through to devising new kinds of rehabilitation for specific illnesses.

For further details contact:

Pasquale Di Palermo
STS 107 Mission Manager
Tel: +1-281-467-1320

ESA Media Relations Service
Tel: +33(0)1.53.69.7155
Fax: +33(0)1.53.69.7690

Pasquale Di Palermo | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>