Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding physics modeled at the atomic level

16.10.2002



Researchers at Los Alamos National Laboratory and the University of California, San Diego, have created the first computer simulation of full-system protein folding thermodynamics at the atomic-level. Understanding the basic physics of protein folding could solve one of the grand mysteries of computational biology.

Proteins are the basic building blocks of life and protein folding, the process by which proteins reconfigure themselves - the actions that result in structural change - are the foundation of cellular growth and the health of a biological system. When proteins incorrectly fold the malfunction can give rise to a variety of diseases. The fact that proteins fold has been known since the 1960s, but an understanding of the chemical and physical properties of folding continues to elude scientists.

Understanding how proteins undergo the folding process has largely been studied from a biologist’s point of view, probing actual proteins and studying them with high-powered microscopy techniques. Now, Los Alamos theoretical biophysicist Angel Garcia, along with colleague Jose N. Onuchic of UC San Diego, have created a computer model of protein folding that focuses on the physics of the protein folding, specifically looking at the temperature changes that occur in the process.



Findings were presented at the Rocky Mountain regional meeting of the American Chemical Society, Albuquerque.

Protein complexes can be very large molecules containing millions of atoms, and protein folding is chemically and physically complex. Folding occurs very rapidly as well, with small protein molecules folding in millionths of seconds.

"We have chosen to first look at a comparatively simple protein in water system consisting of about 18,000 atoms, called a 3-heilx bundle, that folds in a fairly simple way and relatively slowly, in about 10 microseconds," said Garcia. "Our calculation is based on Onuchic’s ’funneling theory’ of protein folding that looks at the ’energy landscape’ of folding and finds that as the protein gets closer and closer to it’s folded state it’s energy gets lower and lower."

Garcia implemented an algorithm that relies on exhaustive sampling of protein configurations and utilizes massively parallel computing combined with molecular dynamics and a random-sampling Monte Carlo simulation of the thermodynamics. The result is a computer model of the basic physical properties in a simple system that, if correct, should be applicable to even the most complex proteins. "In principle," said Garcia, "it should work for all proteins."

The protein folding problem is complex computationally because a protein can adopt many shapes and configurations that grow exponentially based on the number of amino acids in a chain, called a polypeptide. A typical protein has between 60 and 150 amino acids. A typical amino acid, like glutamine, consists of 20 carbon, hydrogen, oxygen and nitrogen atoms.

Garcia’s 18,000-atom computation was completed on 82 parallel processors over about a six-month time frame, translating to more than 34 years of Central Processing Unit time.

Garcia plans to continue working on protein folding physics, creating more complex models that mimic the physics beyond the thermodynamic, with the eventual goal of better understanding the folding process for even the most complex protein structures.


###
Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

Kevin Roark | EurekAlert!
Further information:
http://www.lanl.gov.

More articles from Interdisciplinary Research:

nachricht Combating sulphuric acid corrosion at wastewater plants: Graz scientists develop new solution
23.02.2018 | Technische Universität Graz

nachricht Stealth Virus for Cancer Therapy
31.01.2018 | Universität Zürich

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>