Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding physics modeled at the atomic level

16.10.2002



Researchers at Los Alamos National Laboratory and the University of California, San Diego, have created the first computer simulation of full-system protein folding thermodynamics at the atomic-level. Understanding the basic physics of protein folding could solve one of the grand mysteries of computational biology.

Proteins are the basic building blocks of life and protein folding, the process by which proteins reconfigure themselves - the actions that result in structural change - are the foundation of cellular growth and the health of a biological system. When proteins incorrectly fold the malfunction can give rise to a variety of diseases. The fact that proteins fold has been known since the 1960s, but an understanding of the chemical and physical properties of folding continues to elude scientists.

Understanding how proteins undergo the folding process has largely been studied from a biologist’s point of view, probing actual proteins and studying them with high-powered microscopy techniques. Now, Los Alamos theoretical biophysicist Angel Garcia, along with colleague Jose N. Onuchic of UC San Diego, have created a computer model of protein folding that focuses on the physics of the protein folding, specifically looking at the temperature changes that occur in the process.



Findings were presented at the Rocky Mountain regional meeting of the American Chemical Society, Albuquerque.

Protein complexes can be very large molecules containing millions of atoms, and protein folding is chemically and physically complex. Folding occurs very rapidly as well, with small protein molecules folding in millionths of seconds.

"We have chosen to first look at a comparatively simple protein in water system consisting of about 18,000 atoms, called a 3-heilx bundle, that folds in a fairly simple way and relatively slowly, in about 10 microseconds," said Garcia. "Our calculation is based on Onuchic’s ’funneling theory’ of protein folding that looks at the ’energy landscape’ of folding and finds that as the protein gets closer and closer to it’s folded state it’s energy gets lower and lower."

Garcia implemented an algorithm that relies on exhaustive sampling of protein configurations and utilizes massively parallel computing combined with molecular dynamics and a random-sampling Monte Carlo simulation of the thermodynamics. The result is a computer model of the basic physical properties in a simple system that, if correct, should be applicable to even the most complex proteins. "In principle," said Garcia, "it should work for all proteins."

The protein folding problem is complex computationally because a protein can adopt many shapes and configurations that grow exponentially based on the number of amino acids in a chain, called a polypeptide. A typical protein has between 60 and 150 amino acids. A typical amino acid, like glutamine, consists of 20 carbon, hydrogen, oxygen and nitrogen atoms.

Garcia’s 18,000-atom computation was completed on 82 parallel processors over about a six-month time frame, translating to more than 34 years of Central Processing Unit time.

Garcia plans to continue working on protein folding physics, creating more complex models that mimic the physics beyond the thermodynamic, with the eventual goal of better understanding the folding process for even the most complex protein structures.


###
Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

Kevin Roark | EurekAlert!
Further information:
http://www.lanl.gov.

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>