Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stem Cell Program : Funds Awarded to Nervous System Projects and Stem Cell Bank Networks

06.09.2002

Nine projects and two extensive networks will share 44 million Swedish kronor (SEK) in research funds, the first grants awarded by Sweden’s new Joint Program on Stem Cell Research. Of nearly 50 applicants, 11 received grants. Several of the funded projects address the nervous system. Diabetes is another area to receive funding. - The entire stem cell field is on the threshold of development. These grants are extremely important for advancing research so that we can identify areas with the greatest potential, says Harriet Wallberg-Henriksson, General Secretary of the Scientific Council for Medicine at the Swedish Research Council. In the long run, it is our hope that stem cells can be used to cure various diseases. However, intensive research is needed before we can say if, and when, this will be possible.

An international panel of five leading experts, all active researchers in the stem cell field, reviewed and evaluated the grant proposals. Selection was based on the quality of the proposals. Projects selected, project leaders, and funds granted (SEK) for a 3-year period (alphabetical order by surname of project leader): - Cellular and molecular characterization of stem cell proliferation and differentiation / Ernest Arenas, Karolinska Institutet, Stockholm: 2.7 million SEK - Survival of neural stem cells and their differentiated progeny in vitro and in vivo / Patrik Brundin, Lund University: 1.5 million SEK - Genome-wide analysis of genetic reprogramming in neuronal stem cell development / Carlos F Ibáñez, Karolinska Institute: 3 million SEK - Genetic control of hematopoietic stem cell fate: Therapeutic implications / Stefan Karlsson, Lund University: 2.4 million SEK - Notch signalling and stem cell differentiation / Urban Lendahl, Karolinska Institutet, Stockholm: 3 million SEK - Cancer cells, are they stem cells without control? / Monica Nistér, Karolinska Institutet, Stockholm: 2.4 million SEK - Epigenetic reprogramming and transdifferentiation of somatic cells / Rolf Ohlsson, Uppsala University: 3 million SEK - Differentiation of functional pancreatic beta cells from human embryonic stem cells / Henrik Semb, Göteborg University: 1.8 million SEK - Utilization of endothelial-derived signals for differentiating embryonic stem cells to insulin producing cells / Michael Welsh, Uppsala University: 1.8 million SEK - (network) Network for somatic stem cell plasticity / Sten-Eirik Jacobsen, Lund University: 12 million SEK - (network) Derivation, characterization, and banking of human embryonic stem cells / Lars Ährlund-Richter, Karolinska Institutet: 10.5 million SEK

Background Financing for the grants is based an agreement totaling 75 million SEK which the Swedish Research Council reached in the Spring of 2002 with the Juvenile Diabetes Research Foundation (JDRF) in the United States and the Swedish Diabetes Association Research Foundation. Over a 5-year period, JDRF will contribute 50 million SEK, the Swedish Research Council will contribute 20 million SEK, and the Swedish Diabetes Association Research Foundation will contribute 5 million SEK. The program includes 5 million SEK earmarked for research on ethical and legal issues. These grants will be awarded later in the autumn.

Kajsa Eriksson | AlphaGalileo
Further information:
http://www.vr.se

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>