Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Vinland Map shows its true colors; scientists say it’s a confirmed forgery

29.07.2002


For the first time in the controversial saga of the famous Vinland Map, scientists say they have shown with certainty that the supposed relic is actually a 20th-century forgery. The findings are reported in the July 31 print issue of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

The Vinland Map -- a drawing that suggests Norse explorers charted North America long before Columbus -- has given scientists and historians a fertile platform for debate throughout its contentious history. Several studies have questioned its authenticity, but disagreement about techniques and interpretations has left some adherents to the map’s 15th-century origins unconvinced.

While other evidence has already established the pre-Columbian presence of the Vikings in North America, the map still serves as an important piece of history and has been valued by some at more than $20 million. It resides at the Beinecke Rare Book and Manuscript Library of Yale University.



"The Vinland Map is arguably one of the most important maps in the world," said Robin Clark, D.Sc., Sir William Ramsay Professor of Chemistry at University College London. Clark and Katherine Brown, a doctoral candidate, used Raman microprobe spectroscopy to identify the chemical components in the inks on the Vinland Map.

In this technique, a laser beam is directed at an object; a small portion of the light scatters off the molecules as radiation with different colors. Every material has a unique scattering spectrum that acts as a fingerprint, allowing scientists to identify it.

The ink is made up of two parts: a yellowish line that adheres strongly to the parchment overlaid with a black line that appears to have flaked off.

The yellow line contains anatase -- the least common form of titanium dioxide found in nature. Some scientists have concluded that the map must be of 20th-century origin because anatase could not be synthesized until around 1923. Others have suggested that anatase could have been formed during the medieval production of iron-based inks.

The current study is the first to establish precisely where the anatase is located on the map. The Raman technique allowed the researchers to examine the entire map in place, as opposed to other methods that drew individual samples from the map. "Anatase was detected solely in the ink lines and not elsewhere on the parchment, so [it] must be an integral part of the yellow line," the authors assert in their paper.

Prior to the development of the printing press, manuscripts were generally written in either carbon-based inks or iron gallotannate inks. Erosion of the latter makes the parchment brittle and often leads to brown or yellow staining. "Knowing that such yellowing is a common feature of medieval manuscripts, a clever forger may seek to simulate this degradation by the inclusion of a yellow line in his rendering of the map," the researchers suggested.

The study shows, however, that the black ink is made from carbon, not iron gallotannate, which makes the natural occurrence of yellowing impossible. Also, the map has not grown brittle over the years, as would be expected with an iron gallotannate ink.

"The Raman results provide the first definitive proof that the map itself was drawn after 1923," Clark said. "The results demonstrate the great importance of modern analytical techniques in the study of items in our cultural heritage."

Beverly Hassell | EurekAlert!

More articles from Interdisciplinary Research:

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>