Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Vinland Map shows its true colors; scientists say it’s a confirmed forgery


For the first time in the controversial saga of the famous Vinland Map, scientists say they have shown with certainty that the supposed relic is actually a 20th-century forgery. The findings are reported in the July 31 print issue of Analytical Chemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

The Vinland Map -- a drawing that suggests Norse explorers charted North America long before Columbus -- has given scientists and historians a fertile platform for debate throughout its contentious history. Several studies have questioned its authenticity, but disagreement about techniques and interpretations has left some adherents to the map’s 15th-century origins unconvinced.

While other evidence has already established the pre-Columbian presence of the Vikings in North America, the map still serves as an important piece of history and has been valued by some at more than $20 million. It resides at the Beinecke Rare Book and Manuscript Library of Yale University.

"The Vinland Map is arguably one of the most important maps in the world," said Robin Clark, D.Sc., Sir William Ramsay Professor of Chemistry at University College London. Clark and Katherine Brown, a doctoral candidate, used Raman microprobe spectroscopy to identify the chemical components in the inks on the Vinland Map.

In this technique, a laser beam is directed at an object; a small portion of the light scatters off the molecules as radiation with different colors. Every material has a unique scattering spectrum that acts as a fingerprint, allowing scientists to identify it.

The ink is made up of two parts: a yellowish line that adheres strongly to the parchment overlaid with a black line that appears to have flaked off.

The yellow line contains anatase -- the least common form of titanium dioxide found in nature. Some scientists have concluded that the map must be of 20th-century origin because anatase could not be synthesized until around 1923. Others have suggested that anatase could have been formed during the medieval production of iron-based inks.

The current study is the first to establish precisely where the anatase is located on the map. The Raman technique allowed the researchers to examine the entire map in place, as opposed to other methods that drew individual samples from the map. "Anatase was detected solely in the ink lines and not elsewhere on the parchment, so [it] must be an integral part of the yellow line," the authors assert in their paper.

Prior to the development of the printing press, manuscripts were generally written in either carbon-based inks or iron gallotannate inks. Erosion of the latter makes the parchment brittle and often leads to brown or yellow staining. "Knowing that such yellowing is a common feature of medieval manuscripts, a clever forger may seek to simulate this degradation by the inclusion of a yellow line in his rendering of the map," the researchers suggested.

The study shows, however, that the black ink is made from carbon, not iron gallotannate, which makes the natural occurrence of yellowing impossible. Also, the map has not grown brittle over the years, as would be expected with an iron gallotannate ink.

"The Raman results provide the first definitive proof that the map itself was drawn after 1923," Clark said. "The results demonstrate the great importance of modern analytical techniques in the study of items in our cultural heritage."

Beverly Hassell | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>