Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Europe and Japan join forces to map out future of intelligent robots

The field of robotics could be poised for a breakthrough, leading to a new generation of intelligent machines capable of taking on multiple tasks and moving out of the factory into the home and general workplace.

The great success of robots so far has been in automating repetitive tasks in process control and assembly, yielding dramatic cuts in production, but the next step towards cognition and more human-like behaviour has proved elusive.

It has been difficult to make robots that can truly learn and adapt to unexpected situations in the way humans can, while it has been equally challenging trying to develop a machine capable of moving smoothly like any animal. There is still no robot capable of walking properly without jerky slightly unbalanced movements.

But significant progress has been made over the last few years, and the stage was set for a push towards a new generation of intelligent machines at a conference bringing together young scientists in both Europe and Japan, which both have a strong history of robotics development. The event, jointly organized by the European Science Foundation (ESF) and the Japan Society for the Promotion of Science (JSPS), and held in Japan, was targeted at young researchers actively working in the fields of cognitive science and robotics.

The difficult problem of making robots capable of moving elegantly was discussed in two presentations, with Professor Florentin Worgotter from Gottingen University in Germany pointing out that Russian physiologist Nikolai Bernstein had anticipated the difficulty of mimicking animal movements in 1930, because this required a complex combination of mechanics, neuronal feedback, and instantaneous adaptability.

However Worgotter suggested that with greater understanding now of how animals coordinate their movements, the same principles could soon be transferable to robots, even if it will be some time before this problem is solved completely.

Meanwhile Dr. Shuuji Kajita from Japanese research group AIST demonstrated biped robots with new walking techniques based on the Zero-Moment Point principle, which is essentially designed to ensure that any top heavy system such as a humanoid robot can walk without losing balance or imposing too great a stress on its points of contact with the ground. Such robots move considerably better than earlier machines, with scope for further improvement.

Enabling robots to be adaptable and learn from their mistakes in their operating environment was another major focus of the ESF/JSPS conference. Professor Yasuo Kuniyoshi from the University of Tokyo admitted that traditional approaches based on artificial intelligence techniques developed over the past 25 years had not succeeded in making adaptable robots. Such techniques involve breaking down events that a robot has not been programmed to expect into smaller parts in an attempt to analyse them. The problem with this is that the robot has no context in which to decide how to act, and an alternative approach now being tried involves imposing constraints on the robot's interactions, from which more intelligent behavior can emerge.

Then Dr. Ales Ude from the Jozef Stefan Institute in Slovenia introduced the new concept of 'object-action complex' (OAC), which has recently been proposed to help robots learn actively through manipulation in an attempt to perform specific tasks. This can be combined with imitation and coaching, resembling more closely the way people learn new tasks.

No matter what approach is adopted to teaching robots, there has to be some form of communication with humans, and so this was another major focus of the conference. Professor Aude Billard from the Swiss Federal Institute of Technology in Laussane reported recent progress developing natural means of transmitting human knowledge about tasks and skills to robots. Her work exploits various methods of human-machine interaction, in particular the ability to imitate. Up to now, giving robots the ability to imitate even simple gestures has proved sufficiently complex to occupy the research community for many years.

But very recently, it has become clear that the way forward lies with enabling robots to interpret the user's intention and predict the user's actions. Billard's group has progressively added complexity to its algorithms (computerised procedures) for learning by imitation, taking inspiration from various stages of learning in children. This starts from reflexive imitation of body motions and builds up to informed and selective replication of goal-directed tasks.

The future of cognitive robotics lies in combining the techniques discussed at the ESF/JSPS conference to develop true humanoid machines capable of assisting in homes, offices, and public places. For example a humanoid butler could assist disabled people at home, while humanoid porters could carry heavy bags in airports or train stations.

Thomas Lau | alfa
Further information:

More articles from Interdisciplinary Research:

nachricht Tiny implants for cells are functional in vivo
19.03.2018 | Universität Basel

nachricht Scientists develop new tool for imprinting biochips
09.03.2018 | Advanced Science Research Center, GC/CUNY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>