Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the European research project CARS Explorer

09.07.2008
The CARS Explorer project, coordinated by Didier Marguet from the French National Institute for Health and Medical Research (Inserm Unit 631, CIML, Marseille), was officially launched in April in Marseille, France.

CARS Explorer is a collaborative research project funded by the European Commission under the Health priority of the 7th Framework Programme. This highly interdisciplinary consortium brings together internationally renowned physicists, biologists and clinicians of six institutional bodies from four European countries and a French SME.

Financed for three years, CARS Explorer seeks to demonstrate the concept of innovative light-based contrasting technologies for functional in situ imaging in life science and biomedical research. The ultimate goal of the consortium is to develop an endoscope based on non-linear optics (NLO) and laser pulse phase shaping.

Today, NLO technologies allow primarily low-depth exploration. However, they present major opportunities at the morphological and molecular level which makes it an original tool for biomedical analysis without requiring preliminary sample preparation, thus providing real time information to the patients.

To bring the concept to the diagnostic level, Cars Explorer partners will explore the molecular and morphological NLO signatures associated with tumour development in skin cancer, one of the fastest growing cancers in Europe with an incidence increase of 5 to 7 % a year. (Source: Ligue contre le Cancer). The consortium will concentrate its efforts on the so designated Coherent Anti-Stokes Raman Scattering (CARS) microscopy technique which permits to produce real time 3D images of cells and tissues at a molecular level, without any labelling or staining.

The development of this novel imaging technology will allow an efficient use of our knowledge of cancer molecular modifications. Indeed, this project will have a major strategic and economic impact by providing a non-invasive functional exploration method for clinical research and treatment, in particular for the prevention, diagnosis and monitoring of cancer. In the end, “an imaging technology capable of providing in vivo information both at the cellular and molecular level would be an outstanding and decisive breakthrough. It is certain that such approaches will play an increasingly central part in oncology and clinical research as well in the treatment of patients affected by cancer” says Didier Marguet.

The CARS Explorer consortium is coordinated by the French National Institute for the Health and Medical research (Inserm) and includes the French National Centre for Scientific Research (CNRS), the de Duve Institute (Belgium), the University of Stuttgart (Germany), the University of Bath (UK), Mauna Kea Technologies SAS (a French SME specialised in minimally-invasive biomedical imaging) and Inserm Transfert SA (France).

Céline Cortot | alfa
Further information:
http://www.inserm-transfert.fr
http://www.carsexplorer.eu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>