Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of the European research project CARS Explorer

09.07.2008
The CARS Explorer project, coordinated by Didier Marguet from the French National Institute for Health and Medical Research (Inserm Unit 631, CIML, Marseille), was officially launched in April in Marseille, France.

CARS Explorer is a collaborative research project funded by the European Commission under the Health priority of the 7th Framework Programme. This highly interdisciplinary consortium brings together internationally renowned physicists, biologists and clinicians of six institutional bodies from four European countries and a French SME.

Financed for three years, CARS Explorer seeks to demonstrate the concept of innovative light-based contrasting technologies for functional in situ imaging in life science and biomedical research. The ultimate goal of the consortium is to develop an endoscope based on non-linear optics (NLO) and laser pulse phase shaping.

Today, NLO technologies allow primarily low-depth exploration. However, they present major opportunities at the morphological and molecular level which makes it an original tool for biomedical analysis without requiring preliminary sample preparation, thus providing real time information to the patients.

To bring the concept to the diagnostic level, Cars Explorer partners will explore the molecular and morphological NLO signatures associated with tumour development in skin cancer, one of the fastest growing cancers in Europe with an incidence increase of 5 to 7 % a year. (Source: Ligue contre le Cancer). The consortium will concentrate its efforts on the so designated Coherent Anti-Stokes Raman Scattering (CARS) microscopy technique which permits to produce real time 3D images of cells and tissues at a molecular level, without any labelling or staining.

The development of this novel imaging technology will allow an efficient use of our knowledge of cancer molecular modifications. Indeed, this project will have a major strategic and economic impact by providing a non-invasive functional exploration method for clinical research and treatment, in particular for the prevention, diagnosis and monitoring of cancer. In the end, “an imaging technology capable of providing in vivo information both at the cellular and molecular level would be an outstanding and decisive breakthrough. It is certain that such approaches will play an increasingly central part in oncology and clinical research as well in the treatment of patients affected by cancer” says Didier Marguet.

The CARS Explorer consortium is coordinated by the French National Institute for the Health and Medical research (Inserm) and includes the French National Centre for Scientific Research (CNRS), the de Duve Institute (Belgium), the University of Stuttgart (Germany), the University of Bath (UK), Mauna Kea Technologies SAS (a French SME specialised in minimally-invasive biomedical imaging) and Inserm Transfert SA (France).

Céline Cortot | alfa
Further information:
http://www.inserm-transfert.fr
http://www.carsexplorer.eu

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>