Can the sphinx keep its feet dry?

The monuments of ancient Egypt may have stood for thousands of years in the desert sands, but now they face a new threat — from rising groundwater.

Ayman Ahmed of the University of Sohag, Egypt, is working with Graham Fogg, professor of hydrology at the University of California, Davis, to study the problem and find ways to solve it.

Preliminary findings by Ahmed and Fogg indicate that farming, urbanization and residential housing near the temples are causing water tables to rise. When the water table rises, the groundwater comes closer to the foundations, columns and walls of the antiquities, causing structural damage. Water and salts weaken the sandstone structures.

“Probably the most dangerous factors affecting the pharaonic monuments are urbanization and agricultural development,” Ahmed said. Damage to the monuments has worsened in the years since completion of the Aswan dam, allowing year-round irrigation of crops instead of seasonal flooding, said Fogg.

Ahmed and Fogg are using data from sites including the temples at Luxor and Karnak to build a computer model of how groundwater moves under the monuments. They hope to find ways to prevent or reduce the damage.

Ahmed approached Fogg’s group after concluding that UC Davis had one of the strongest hydrology programs in the world.

“It’s a fascinating problem,” said Fogg.

Media contacts: Graham Fogg, Land, Air and Water Resources, 530-752-6810, gefogg@ucdavis.edu; Ayman Ahmed, Land, Air and Water Resources, aaahmed@ucdavis.edu; Sylvia Wright, News Service, 530-752-7704, swright@ucdavis.edu; Andy Fell, News Service, 530-752-4533, ahfell@ucdavis.edu

Media Contact

Andy Fell EurekAlert!

All latest news from the category: Interdisciplinary Research

News and developments from the field of interdisciplinary research.

Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors