Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers mimic bacteria to produce magnetic nanoparticles

15.04.2008
Interdisciplinary Ames Laboratory team uses bioinspired approach

When it comes to designing something, it’s hard to find a better source of inspiration than Mother Nature. Using that principle, a diverse, interdisciplinary group of researchers at the U.S. Department of Energy’s Ames Laboratory is mimicking bacteria to synthesize magnetic nanoparticles that could be used for drug targeting and delivery, in magnetic inks and high-density memory devices, or as magnetic seals in motors.

Commercial room-temperature synthesis of ferromagnetic nanoparticles is difficult because the particles form rapidly, resulting in agglomerated clusters of particles with less than ideal crystalline and magnetic properties. Size also matters. As particles get smaller, their magnetic properties, particularly with regard to temperature, also diminish.

However, several strains of bacteria produce magnetite (Fe3O4) – fine, uniform nanoparticles that have desirable magnetic properties. These magnetotactic bacteria use a protein to form crystalline particles about 50 nanometers in size. These crystals are bound by membranes to form chains of particles which the bacteria use like a compass needle to orient themselves with the Earth’s magnetic field.

To see if researchers could learn from the bacteria, Surya Mallapragada, Ames Laboratory Materials Chemistry and Biomolecular Materials program director pulled together a team that included microbiologists, biochemists, material chemists, chemical engineers, materials scientists and physicists from Ames Laboratory and Iowa State University.

Strings of magnetic nanoparticles within bacteria. As a starting point, former ISU microbiologist Dennis Bazylinski, now at the University of Nevada-Las Vegas, isolated several strains of magnetotactic bacteria for use in the study.

Based on earlier work by a Japanese research team, Ames Laboratory biochemist Marit Nilsen-Hamilton looked at several proteins known to bind iron, including Mms6 found in magnetotactic bacteria, which she cloned from the bacteria. “This protein is associated with the membranes that surround the magnetite crystals,” Nilsen-Hamilton said, “and each bacterium appears to make particles with their own unique crystal structure.”

Ames Lab chemist Tanya Prozorov tried synthesizing crystals, using the proteins with various concentrations of reagents in an aqueous solution, but the particles formed quickly, were small and lacked specific crystal morphology. At the suggestion of Ames Lab senior physicist and crystal growth expert Paul Canfield, the team used polymer gels developed by Mallapragada and Balaji Narasimhan, who are both Ames Lab scientists as well as ISU chemical engineers, to slow down the reaction and help control formation of the nanocrystals and minimize aggregation.

“It’s simple chemistry,” Prozorov said, “and you can judge the reaction by the color, watching it go from yellow to green to black as the crystals form. Once the crystals precipitate out, we use a magnet to concentrate the particles at the bottom of the flask, then separate them out to study them further.”

Prozorov also conducted electron microscopy analysis of the synthetic nanoparticles which showed that Mms6 produced well-formed, faceted crystals resembling those produced naturally by the bacteria. Powder X-ray diffraction studies verified the crystal structure of the particles.

Ames Lab physicist Ruslan Prozorov, tested the magnetic properties of the synthetic crystals which also showed striking similarities to the bacteria-produced crystals and bulk magnetite. The magnetic studies also showed that the “chains” of particles formed by the bacteria had a much sharper magnetic transition definition at a higher temperature than single crystals.

“Nature found a way to beat the thermodynamics (of crystalline magnetite) by arranging the nanoparticles in such a way that they aren’t affected by temperature the way individual crystals are,” Ruslan Prozorov said.

With this basic understanding of magnetotatic bacteria and the ability to synthesize magnetite nanoparticles, the team proceeded to find out if the bioinspired approach could be used to produce cobalt-ferrite nanoparticles. Cobalt-ferrite, which doesn’t occur in living organisms, has more desirable magnetic properties than magnetite, yet presents the same problems for commercially producing nano-scale particles.

In addition to their previous method, the team took the added step of covalently attaching the Mms6 to a strand of functionalized polymer known to self-assemble and form thermoreversible gels. Because the polymer strands come together in a particular way, the attached proteins had a specific alignment that the researchers hoped would serve as a template for the formation of cobalt-ferrite crystals. And the way in which the gel formed would help control the speed of the reaction.

“It worked rather well,” Tanya Prozorov said, “and we ended up with very nice hexagonal cobalt ferrite crystals” and added that she is studying whether the protein will also work for the other neodymium, gadolinium, and holmium ferrites.

The project is funded by the Department of Energy’s Office of Basic Energy Sciences, the National Science Foundation, and the Alfred P. Sloan Foundation. The research has generated fodder for a number of journal articles, including published works in ACSNano, Physical Review B, and Advanced Functional Materials.

“This is an exciting interdisciplinary project addressing some of Basic Energy Sciences’ ‘Grand Challenges’ by bringing together materials scientists, chemists, physicists and biologists to develop new bioinspired materials of relevance to DOE's mission,” said Mallapragada. “Ames Laboratory is a wonderful environment in which to foster and grow these sorts of interdisciplinary initiatives because teamwork is really built into the culture here."

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov
http://www.ameslab.gov

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>