Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers mimic bacteria to produce magnetic nanoparticles

15.04.2008
Interdisciplinary Ames Laboratory team uses bioinspired approach

When it comes to designing something, it’s hard to find a better source of inspiration than Mother Nature. Using that principle, a diverse, interdisciplinary group of researchers at the U.S. Department of Energy’s Ames Laboratory is mimicking bacteria to synthesize magnetic nanoparticles that could be used for drug targeting and delivery, in magnetic inks and high-density memory devices, or as magnetic seals in motors.

Commercial room-temperature synthesis of ferromagnetic nanoparticles is difficult because the particles form rapidly, resulting in agglomerated clusters of particles with less than ideal crystalline and magnetic properties. Size also matters. As particles get smaller, their magnetic properties, particularly with regard to temperature, also diminish.

However, several strains of bacteria produce magnetite (Fe3O4) – fine, uniform nanoparticles that have desirable magnetic properties. These magnetotactic bacteria use a protein to form crystalline particles about 50 nanometers in size. These crystals are bound by membranes to form chains of particles which the bacteria use like a compass needle to orient themselves with the Earth’s magnetic field.

To see if researchers could learn from the bacteria, Surya Mallapragada, Ames Laboratory Materials Chemistry and Biomolecular Materials program director pulled together a team that included microbiologists, biochemists, material chemists, chemical engineers, materials scientists and physicists from Ames Laboratory and Iowa State University.

Strings of magnetic nanoparticles within bacteria. As a starting point, former ISU microbiologist Dennis Bazylinski, now at the University of Nevada-Las Vegas, isolated several strains of magnetotactic bacteria for use in the study.

Based on earlier work by a Japanese research team, Ames Laboratory biochemist Marit Nilsen-Hamilton looked at several proteins known to bind iron, including Mms6 found in magnetotactic bacteria, which she cloned from the bacteria. “This protein is associated with the membranes that surround the magnetite crystals,” Nilsen-Hamilton said, “and each bacterium appears to make particles with their own unique crystal structure.”

Ames Lab chemist Tanya Prozorov tried synthesizing crystals, using the proteins with various concentrations of reagents in an aqueous solution, but the particles formed quickly, were small and lacked specific crystal morphology. At the suggestion of Ames Lab senior physicist and crystal growth expert Paul Canfield, the team used polymer gels developed by Mallapragada and Balaji Narasimhan, who are both Ames Lab scientists as well as ISU chemical engineers, to slow down the reaction and help control formation of the nanocrystals and minimize aggregation.

“It’s simple chemistry,” Prozorov said, “and you can judge the reaction by the color, watching it go from yellow to green to black as the crystals form. Once the crystals precipitate out, we use a magnet to concentrate the particles at the bottom of the flask, then separate them out to study them further.”

Prozorov also conducted electron microscopy analysis of the synthetic nanoparticles which showed that Mms6 produced well-formed, faceted crystals resembling those produced naturally by the bacteria. Powder X-ray diffraction studies verified the crystal structure of the particles.

Ames Lab physicist Ruslan Prozorov, tested the magnetic properties of the synthetic crystals which also showed striking similarities to the bacteria-produced crystals and bulk magnetite. The magnetic studies also showed that the “chains” of particles formed by the bacteria had a much sharper magnetic transition definition at a higher temperature than single crystals.

“Nature found a way to beat the thermodynamics (of crystalline magnetite) by arranging the nanoparticles in such a way that they aren’t affected by temperature the way individual crystals are,” Ruslan Prozorov said.

With this basic understanding of magnetotatic bacteria and the ability to synthesize magnetite nanoparticles, the team proceeded to find out if the bioinspired approach could be used to produce cobalt-ferrite nanoparticles. Cobalt-ferrite, which doesn’t occur in living organisms, has more desirable magnetic properties than magnetite, yet presents the same problems for commercially producing nano-scale particles.

In addition to their previous method, the team took the added step of covalently attaching the Mms6 to a strand of functionalized polymer known to self-assemble and form thermoreversible gels. Because the polymer strands come together in a particular way, the attached proteins had a specific alignment that the researchers hoped would serve as a template for the formation of cobalt-ferrite crystals. And the way in which the gel formed would help control the speed of the reaction.

“It worked rather well,” Tanya Prozorov said, “and we ended up with very nice hexagonal cobalt ferrite crystals” and added that she is studying whether the protein will also work for the other neodymium, gadolinium, and holmium ferrites.

The project is funded by the Department of Energy’s Office of Basic Energy Sciences, the National Science Foundation, and the Alfred P. Sloan Foundation. The research has generated fodder for a number of journal articles, including published works in ACSNano, Physical Review B, and Advanced Functional Materials.

“This is an exciting interdisciplinary project addressing some of Basic Energy Sciences’ ‘Grand Challenges’ by bringing together materials scientists, chemists, physicists and biologists to develop new bioinspired materials of relevance to DOE's mission,” said Mallapragada. “Ames Laboratory is a wonderful environment in which to foster and grow these sorts of interdisciplinary initiatives because teamwork is really built into the culture here."

Ames Laboratory is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov
http://www.ameslab.gov

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>