Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shedding light on life — new institute to develop biological imaging techniques

Scientific questions are becoming increasingly complex — scientists and engineers must respond by spanning the traditional boundaries between disciplines to develop the sophisticated tools needed to conduct leading research.

That's the thinking behind a new institute set to be launched at The University of Nottingham that brings engineers, physicists, biologists and chemists together under one roof.

The Institute of Biophysics, Imaging and Optical Science (IBIOS) will develop novel imaging technologies using state-of-the-art equipment and use them to solve biological problems. The research could cover any biological system at any scale — from molecules to cells to whole tissue samples.

The institute will be home to a range of optical microscopy equipment and scanning probe systems, including a new scanning conductance ion microscope. Biological and chemical lab facilities will also be available. Software, hardware and silicon chip engineering facilities will allow researchers to build custom-made cameras, and develop systems designed to tackle specific biological problems.

One example of interdisciplinary research within IBIOS is the Research Councils UK (RCUK) Basic Technology Programme — Attogram. Under Attogram, IBIOS is developing new technologies for screening a range of diseases such as Chronic Obstructive Pulmonary Disorder (COPD), in collaboration with Exeter University. Screening COPD requires the testing of a large number of chemical markers simultaneously. The new system has unique chemistry, which attaches the biological markers to a sensor surface. Specially-designed optics can then interrogate large arrays of these bio-chemicals. Detection of the optical signals from the sensor surface has involved the development of novel camera technologies based on very large scale integration.

IBIOS was formed from two existing groups; the Cell Biophysics Group headed by Professor Paul O'Shea, which is part of the School of Biology; and the Applied Optics Group headed by Professor Mike Somekh in the School of Electrical and Electronic Engineering. The institute has also appointed two RCUK Academic Research Fellows in functional imaging, Dr Noah Russell and Dr Mark Pitter. These permanent positions are funded jointly by the University and the Research Councils. A masters research degree in biophotonics will be launched later this year.

“The philosophy of the institute combines state-of-the-art developments in optical imaging technology with curiosity-driven research into cellular biology,” said Prof O'Shea. “The key problems facing us in the investigation of the cell arise from the need to extract more quantitative information from biological systems. As the technology required to obtain this information is simply not available its development and application provides one of the major scientific and technological challenges for the future.”

“The institute provides an environment in which researchers from a range of disciplines can work in a close-knit community, with integrated facilities, with a shared research agenda. This is key to a successful interdisciplinary research programme.”

IBIOS has been funded by grants from EPSRC, RCUK, the European Union, the Wellcome Trust, BBSRC, GlaxoSmithKline and Roche.

The official launch of the Institute of Biophysics Imaging and Optical Science will take place on April 11 at the School of Biology. Speakers will discuss some of the rewards and pitfalls of working across the physical-biological science boundary. These include Professor Sir Colin Campbell, Vice-Chancellor of the University, Prof David Delpy FRS, Chief Executive of the Engineering and Physical Sciences Research Council, and Dr Jonathan Allis, Global Head of Imaging Technology at GE Healthcare Medical Diagnostics.

Emma Thorne | alfa
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>