Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shedding light on life — new institute to develop biological imaging techniques

10.04.2008
Scientific questions are becoming increasingly complex — scientists and engineers must respond by spanning the traditional boundaries between disciplines to develop the sophisticated tools needed to conduct leading research.

That's the thinking behind a new institute set to be launched at The University of Nottingham that brings engineers, physicists, biologists and chemists together under one roof.

The Institute of Biophysics, Imaging and Optical Science (IBIOS) will develop novel imaging technologies using state-of-the-art equipment and use them to solve biological problems. The research could cover any biological system at any scale — from molecules to cells to whole tissue samples.

The institute will be home to a range of optical microscopy equipment and scanning probe systems, including a new scanning conductance ion microscope. Biological and chemical lab facilities will also be available. Software, hardware and silicon chip engineering facilities will allow researchers to build custom-made cameras, and develop systems designed to tackle specific biological problems.

One example of interdisciplinary research within IBIOS is the Research Councils UK (RCUK) Basic Technology Programme — Attogram. Under Attogram, IBIOS is developing new technologies for screening a range of diseases such as Chronic Obstructive Pulmonary Disorder (COPD), in collaboration with Exeter University. Screening COPD requires the testing of a large number of chemical markers simultaneously. The new system has unique chemistry, which attaches the biological markers to a sensor surface. Specially-designed optics can then interrogate large arrays of these bio-chemicals. Detection of the optical signals from the sensor surface has involved the development of novel camera technologies based on very large scale integration.

IBIOS was formed from two existing groups; the Cell Biophysics Group headed by Professor Paul O'Shea, which is part of the School of Biology; and the Applied Optics Group headed by Professor Mike Somekh in the School of Electrical and Electronic Engineering. The institute has also appointed two RCUK Academic Research Fellows in functional imaging, Dr Noah Russell and Dr Mark Pitter. These permanent positions are funded jointly by the University and the Research Councils. A masters research degree in biophotonics will be launched later this year.

“The philosophy of the institute combines state-of-the-art developments in optical imaging technology with curiosity-driven research into cellular biology,” said Prof O'Shea. “The key problems facing us in the investigation of the cell arise from the need to extract more quantitative information from biological systems. As the technology required to obtain this information is simply not available its development and application provides one of the major scientific and technological challenges for the future.”

“The institute provides an environment in which researchers from a range of disciplines can work in a close-knit community, with integrated facilities, with a shared research agenda. This is key to a successful interdisciplinary research programme.”

IBIOS has been funded by grants from EPSRC, RCUK, the European Union, the Wellcome Trust, BBSRC, GlaxoSmithKline and Roche.

The official launch of the Institute of Biophysics Imaging and Optical Science will take place on April 11 at the School of Biology. Speakers will discuss some of the rewards and pitfalls of working across the physical-biological science boundary. These include Professor Sir Colin Campbell, Vice-Chancellor of the University, Prof David Delpy FRS, Chief Executive of the Engineering and Physical Sciences Research Council, and Dr Jonathan Allis, Global Head of Imaging Technology at GE Healthcare Medical Diagnostics.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/ibios

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>