Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared remote sensing to measure the temperature of flames

09.04.2008
Scientists from the Universidad Carlos III of Madrid study the use of optical techniques for the measurement of parameters, mainly of the temperature of the flame, in combustion processes in order to control them automatically, reduce the contamination and increase efficiency.

In airplane engines or in some industrial combustion chambers, combustion reactions take place in extreme conditions of heat and pressure, making these environments too harsh for investigation. Nevertheless, a research group from the Universidad Carlos III of Madrid (UC3M) seeks new methods to improve sensing and data collection in such places.

Esteban García-Cuesta, supervised by Antonio J. de Castro and Inés M. Galván, from the departments of physics and Information Technology (IT) of the UC3M respectively, works in a multidisciplinary project for the recovery of physical properties of combustion processes, more specifically the temperature of the flame. This property is very important since it represents all the chemical information about the reaction. Hence, knowing the temperature, the global status of the reaction could be determined and modified automatically when required.

Castro and his team use computer simulations of optical techniques, in particular the infrared emission spectroscopy of the gases produced in the reaction, such as carbon monoxide (CO), or nitrogen oxides (NOx). These compounds, that have clear infrared emission spectral bands, have been selected by the researchers as the parameters to be measured. The spectral information is mathematically related to the temperature of the flame, allowing for its calculation inside a combustion chamber. However, there is the added complication that the translation of the spectra into a temperature profile exhibits a non linear relationship which Professor Castro considers a significant problem, since different temperatures could have very similar spectra, hence producing multiple answers rather than an unique value for the temperature.

Neural networks

The research team applied the multilayer perceptron neural network to translate the spectral data in to thermal data. Since the spectral measurements are taken in high definition, the required calculations for their interpretation using "machine learning" techniques is very high which reduces the performance. Professor Castro stated that although a lot of spectral data is required to evaluate the spectrum accurately, the excess of information is not suitable for a neural network approach. Hence new filters and extraction characteristic techniques must be developed to allow for a reduction in the number of parameters considered while maintaining the accuracy of the information. For this reason, the researchers apply the networks training as an intelligent process of information selection, in this case wavelengths, in order to extract the physical information required and avoid redundancy. Professor Castro underlines that the way in which the information is presented to the neural network is crucial, and at this precise point is where their research centres.

For next stage. these scientists plan to tackle the measurement of spectra in real systems. So far, they have managed to determine theoretical measurements of temperatures with accurate results (about 3 degrees Kelvin more precise at the hottest point of the flame). These computational studies aim to determine the viability of such techniques for the conversion of data.

This temperature monitoring, used in conjunction with feedback systems, could achieve automatic control of the combustion processes. These later systems would receive the information about the combustion reaction, analyse the status of the reaction and feed it back to the system, while possessing the capability to change variables such as the flow of gases and fuel involved, thereby grasping control over the whole process. This would be key for the reduction in the contamination produced and to attain an increased efficiency of the reaction.

The study Multilayer perceptron as inverse model in a ground-based remote sensing temperature retrieval problem has been published in the magazine Engineering Applications of Artificial Intelligence by Esteban García Cuesta, Inés M. Galván y Antonio J. De Castro, researchers at the UC3M.

Oficina Información Científica | alfa
Further information:
http://www.elsevier.com/wps/find/journaldescription.cws_home/975/description#description

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>