Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared remote sensing to measure the temperature of flames

09.04.2008
Scientists from the Universidad Carlos III of Madrid study the use of optical techniques for the measurement of parameters, mainly of the temperature of the flame, in combustion processes in order to control them automatically, reduce the contamination and increase efficiency.

In airplane engines or in some industrial combustion chambers, combustion reactions take place in extreme conditions of heat and pressure, making these environments too harsh for investigation. Nevertheless, a research group from the Universidad Carlos III of Madrid (UC3M) seeks new methods to improve sensing and data collection in such places.

Esteban García-Cuesta, supervised by Antonio J. de Castro and Inés M. Galván, from the departments of physics and Information Technology (IT) of the UC3M respectively, works in a multidisciplinary project for the recovery of physical properties of combustion processes, more specifically the temperature of the flame. This property is very important since it represents all the chemical information about the reaction. Hence, knowing the temperature, the global status of the reaction could be determined and modified automatically when required.

Castro and his team use computer simulations of optical techniques, in particular the infrared emission spectroscopy of the gases produced in the reaction, such as carbon monoxide (CO), or nitrogen oxides (NOx). These compounds, that have clear infrared emission spectral bands, have been selected by the researchers as the parameters to be measured. The spectral information is mathematically related to the temperature of the flame, allowing for its calculation inside a combustion chamber. However, there is the added complication that the translation of the spectra into a temperature profile exhibits a non linear relationship which Professor Castro considers a significant problem, since different temperatures could have very similar spectra, hence producing multiple answers rather than an unique value for the temperature.

Neural networks

The research team applied the multilayer perceptron neural network to translate the spectral data in to thermal data. Since the spectral measurements are taken in high definition, the required calculations for their interpretation using "machine learning" techniques is very high which reduces the performance. Professor Castro stated that although a lot of spectral data is required to evaluate the spectrum accurately, the excess of information is not suitable for a neural network approach. Hence new filters and extraction characteristic techniques must be developed to allow for a reduction in the number of parameters considered while maintaining the accuracy of the information. For this reason, the researchers apply the networks training as an intelligent process of information selection, in this case wavelengths, in order to extract the physical information required and avoid redundancy. Professor Castro underlines that the way in which the information is presented to the neural network is crucial, and at this precise point is where their research centres.

For next stage. these scientists plan to tackle the measurement of spectra in real systems. So far, they have managed to determine theoretical measurements of temperatures with accurate results (about 3 degrees Kelvin more precise at the hottest point of the flame). These computational studies aim to determine the viability of such techniques for the conversion of data.

This temperature monitoring, used in conjunction with feedback systems, could achieve automatic control of the combustion processes. These later systems would receive the information about the combustion reaction, analyse the status of the reaction and feed it back to the system, while possessing the capability to change variables such as the flow of gases and fuel involved, thereby grasping control over the whole process. This would be key for the reduction in the contamination produced and to attain an increased efficiency of the reaction.

The study Multilayer perceptron as inverse model in a ground-based remote sensing temperature retrieval problem has been published in the magazine Engineering Applications of Artificial Intelligence by Esteban García Cuesta, Inés M. Galván y Antonio J. De Castro, researchers at the UC3M.

Oficina Información Científica | alfa
Further information:
http://www.elsevier.com/wps/find/journaldescription.cws_home/975/description#description

More articles from Interdisciplinary Research:

nachricht Easier Diagnosis of Esophageal Cancer
06.03.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sandia uses confined nanoparticles to improve hydrogen storage materials performance
27.02.2017 | DOE/Sandia National Laboratories

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>