Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies of spider’s silk reveal unusual strength

18.06.2002


University of California, Santa Barbara scientists and U.S. Army researchers are making progress in the study of spider dragline silk, according to recently published proceedings of the National Academy of Sciences.

The protein that lets spiders drop and helps the web to catch prey is what interests the researchers. The molecules are designed to be pulled; they are elastic and very strong. The silk can be extended 30 to 50 percent of its length before it breaks. It is stronger than steel and comparable in strength to Kevlar.

"The last decade has seen a significant increase in the scientific literature on spider dragline silk," according to the proceedings. "This interest is due to the impressive mechanical properties of spider dragline silk, at a time when biomaterials and biomimetics are both exciting interest in the rapidly growing field of materials research."



And why is the U.S. Army interested in this material? "The major interest is to use it as material for bulletproof vests, armor and tethers; there are many possibilities," said first author Emin Oroudjev, a researcher at UC Santa Barbara.

At UC Santa Barbara, the focus is on the basic research of learning how the protein folds and how it is organized in the silk fiber. Using atomic force microscopy and a molecular puller, the researchers are getting clues from imaging and pulling the protein. These observations help the researchers to model what is happening in the silk gland when silk proteins are assembling into spider dragline silk fibers.

They found that when the protein unfolds it is modular. It has sacrificial bonds that open, and then reform when the load lifts. This follows a pattern that has been found in other load-bearing proteins.

Spider silk is a composite material. It has crystalline parts and more rubber-like stretchy parts. The researchers found that single molecules have both, explained Helen Hansma, co-author and adjunct associate professor of physics. Spider silk is a composite material that is novel compared to the other load-bearing proteins that have been studied.


Contacts:
Emin Oroudjev -- oroudjev@ia.ucsb.edu, (805) 893-3672
Helen Hansma – hhhansma@physics.ucsb.edu, (805) 893-3881

Gail Gallessich Brown | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>