Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering chimeric polypeptides to illuminate cellular redox states

25.01.2008
UIUC interdisciplinary team reports the design of chimeric polypeptides leading to development of noninvasive biosensors for potential application in biomedical research.

Reduction/oxidation (redox) systems research is reaching a stage where domains that traditionally belonged to the physical sciences, chemistry, and molecular biology are coming together to offer new synergistic opportunities for understanding and manipulating basic cellular processes that underlie complex biomedical problems (e.g., tumorigenesis).

Parallel with this advance is the emerging recognition that the intracellular redox environment exerts a profound influence on the normal cellular processes of DNA synthesis, enzyme activation, selective gene expression, cell cycle progression, proliferation, differentiation, and apoptosis. However, this is a difficult area of study and molecular mechanisms mediating redox sensitivity are poorly defined.

An interdisciplinary research team from the University of Illinois’ Institute for Genomic Biology (IGB) report in the February issue of the journal Experimental Biology and Medicine the engineering of novel peptide sequences that are sensitive to redox conditions inside cells.

“Attachment of linkers between a special pair of green fluorescent proteins (GFP) shows great promise for developing genetically encoded redox sensitive biosensors,” said Vladimir L. Kolossov, corresponding author. To detect oxidation and reduction, the biosensor uses a powerful optical technique called Förster resonance energy transfer (FRET).

The absence of polypeptide linkers able to sense the redox state by undergoing a conformational change was the major obstacle to a FRET-based redox sensor. The researchers designed the linker sequence such that in its reduced state the linker is an α-helix. Thiol groups, strategically placed throughout the linker, sense the redox potential of the environment and form disulfide bonds upon oxidation.

Under oxidative conditions intramolecular disulfide bonds can form, shifting the free energy minimum from the α-helix, to a “clamped-coil” state (similar to a helix-coil transition). The coiled state allows the two fluorescent proteins to approach closer than in the extended helix state, where they can more efficiently exchange excitation energy (i.e., a high FRET state). The extent of energy transfer is easily quantified from the increased emission of the acceptor.

This is the first step towards development of a FRET-based biosensor for visualizing redox potentials and oxidative stress in live cells and tissues via optical microscopy.

“We employed a sensitive technique for measuring FRET to screen our linkers. This methodology greatly expedited the quantitative analysis and development of the linkers and will be very useful for the development of other FRET-based sensors,” said Bryan Q. Spring, a doctoral student and co-author of the publication. Given the importance of the intracellular redox state in determining a cell’s fate, and the increasing evidence that perturbations in the redox state are associated with cancer and various inflammatory disorders as well as aging, FRET-based redox sensors offer significant promise for understanding molecular mechanisms underlying human health and disease.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said “Altered redox status is a hallmark of many diseases ranging from neurological disorders, such as Alzheimer’s Disease, to hematologic disorders such as Sickle Cell Disease. The development of a FRET-based biosensor to measure oxidative stress in living cells would be of enormous benefit to biomedical researchers working in many diverse fields. This is precisely the type of interdisciplinary effort that the new Experimental Biology and Medicine hopes to provide to the international scientific community.”

Dr. Vladimir L. Kolossov | EurekAlert!
Further information:
http://www.sebm.org
http://www.ebmonline.org

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>