Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HIV Therapy in Development: Molecular Scissors Cut Off The “Door Handle”

18.05.2015

Remove the “door handle” and stop the HIV virus that causes AIDS from entering the cell. Researchers at the University Medical Center Hamburg-Eppendorf (UKE) have developed molecular scissors that can be targeted to dissect the gene of a receptor needed by HIV to infect human immune cells.

The gene scissors, part of a “second generation of designer nuclease,” dissect more effectively than enzymes previously used in research. “During testing the dissection was successful in more than half of the cells,” reported Prof. Dr. Boris Fehse from the Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation at the UKE.

In the coming years this type of somatic therapy, the removal of immune cells, which after being treated and transfused back into the patient, could benefit those with HIV. However, further positive results from future testing are required.

“If the current pre-clinical studies confirm the safety of the procedure, then due to the high rate of efficiency, and the massively improved precision when compared to first generation nuclease, coupled with the relatively simple application, we see a real possibility that we can soon begin with clinical testing,” says Prof. Fehse, head of the Research Department for Cell and Gene Therapy. Stopping the virus at the point of entry is the most promising strategy of today’s AIDS research.

The Human Immunodeficiency Virus (HIV) requires molecules at the surface of the immune cells (more precisely: T-Helper Cells) as a portal of entry. “During the initial stages of infection the chemokine receptor, CCR5, plays an essential role as a co-receptor.” In short, if CCR5 is not present on the surface of the T-helper cell then the HIV virus is unable to dock and infect the cell.

“In cooperation with the Heinrich-Pette-Institute here in Hamburg, we are able to show that the genetic changes caused by our newly developed enzyme provide infection protection against reference strains of the HIV virus.”

Fewer Side Effects Thanks to Messenger RNA

Prof. Fehse and the lead author, Dr. Ulrike Mock, reported in the online edition of the specialist journal “Nucleic Acids Research,” that the enzyme scissors named “CCR-Uco” was successful in destroying the CCR5 gene is more that 50% of the T-cells, a process known as gene knockout. To place the molecular scissors in the T-cell, the research team used a synthetically created messenger RNA, and a gene ferry.

“The use of the messenger RNA is, from a practical standpoint, far less complicated than using a virus for gene transfer,” explained Prof. Fehse. The lifespan of the messenger RNA within the cell is much shorter than that of a virus, and the degrading process is completed faster. This means that there is a notable reduction of unwanted side effects as there is the risk that the scissor enzyme would continue to attack the gene after the therapeutic part of its function has been completed.

Chance Discovery: “The Berlin-Patient”

We discovered that the retroactive removal of the CCR5 receptor could actually cure those infected with HIV by pure chance. In North America and Northern Europe, approximately one percent of the population has no CCR5 on their immune cells as the result of a genetic defect. Therefore, these individuals are almost completely protected against the HIV infection. A patient known in research circles as “The Berlin Patient” is the only HIV infected person known worldwide to have been cured, thanks to this genetic defect. The patient developed leukemia and was treated using a stem cell transplant. In this case, the stem cell donor had this advantageous genetic defect, which was transferred to the patient through bone marrow stem cells.

References:
U. Mock et. al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR51, Nucleic Acids Research, 2015 1 (DOI: 10.1093/nar/gkv469)

Contact:
Prof. Dr. Boris Fehse
Head of the Research Department for Cell and Gene Therapy
Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telefon: (040) 7410-55518
E-Mail: fehse@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht New dental implant with built-in reservoir reduces risk of infections
18.01.2017 | KU Leuven

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>