Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HIV Therapy in Development: Molecular Scissors Cut Off The “Door Handle”

18.05.2015

Remove the “door handle” and stop the HIV virus that causes AIDS from entering the cell. Researchers at the University Medical Center Hamburg-Eppendorf (UKE) have developed molecular scissors that can be targeted to dissect the gene of a receptor needed by HIV to infect human immune cells.

The gene scissors, part of a “second generation of designer nuclease,” dissect more effectively than enzymes previously used in research. “During testing the dissection was successful in more than half of the cells,” reported Prof. Dr. Boris Fehse from the Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation at the UKE.

In the coming years this type of somatic therapy, the removal of immune cells, which after being treated and transfused back into the patient, could benefit those with HIV. However, further positive results from future testing are required.

“If the current pre-clinical studies confirm the safety of the procedure, then due to the high rate of efficiency, and the massively improved precision when compared to first generation nuclease, coupled with the relatively simple application, we see a real possibility that we can soon begin with clinical testing,” says Prof. Fehse, head of the Research Department for Cell and Gene Therapy. Stopping the virus at the point of entry is the most promising strategy of today’s AIDS research.

The Human Immunodeficiency Virus (HIV) requires molecules at the surface of the immune cells (more precisely: T-Helper Cells) as a portal of entry. “During the initial stages of infection the chemokine receptor, CCR5, plays an essential role as a co-receptor.” In short, if CCR5 is not present on the surface of the T-helper cell then the HIV virus is unable to dock and infect the cell.

“In cooperation with the Heinrich-Pette-Institute here in Hamburg, we are able to show that the genetic changes caused by our newly developed enzyme provide infection protection against reference strains of the HIV virus.”

Fewer Side Effects Thanks to Messenger RNA

Prof. Fehse and the lead author, Dr. Ulrike Mock, reported in the online edition of the specialist journal “Nucleic Acids Research,” that the enzyme scissors named “CCR-Uco” was successful in destroying the CCR5 gene is more that 50% of the T-cells, a process known as gene knockout. To place the molecular scissors in the T-cell, the research team used a synthetically created messenger RNA, and a gene ferry.

“The use of the messenger RNA is, from a practical standpoint, far less complicated than using a virus for gene transfer,” explained Prof. Fehse. The lifespan of the messenger RNA within the cell is much shorter than that of a virus, and the degrading process is completed faster. This means that there is a notable reduction of unwanted side effects as there is the risk that the scissor enzyme would continue to attack the gene after the therapeutic part of its function has been completed.

Chance Discovery: “The Berlin-Patient”

We discovered that the retroactive removal of the CCR5 receptor could actually cure those infected with HIV by pure chance. In North America and Northern Europe, approximately one percent of the population has no CCR5 on their immune cells as the result of a genetic defect. Therefore, these individuals are almost completely protected against the HIV infection. A patient known in research circles as “The Berlin Patient” is the only HIV infected person known worldwide to have been cured, thanks to this genetic defect. The patient developed leukemia and was treated using a stem cell transplant. In this case, the stem cell donor had this advantageous genetic defect, which was transferred to the patient through bone marrow stem cells.

References:
U. Mock et. al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR51, Nucleic Acids Research, 2015 1 (DOI: 10.1093/nar/gkv469)

Contact:
Prof. Dr. Boris Fehse
Head of the Research Department for Cell and Gene Therapy
Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telefon: (040) 7410-55518
E-Mail: fehse@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht Fighting myocardial infarction with nanoparticle tandems
04.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Virtual Reality for Bacteria
01.12.2017 | Institute of Science and Technology Austria

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>