Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Promising HIV Therapy in Development: Molecular Scissors Cut Off The “Door Handle”

18.05.2015

Remove the “door handle” and stop the HIV virus that causes AIDS from entering the cell. Researchers at the University Medical Center Hamburg-Eppendorf (UKE) have developed molecular scissors that can be targeted to dissect the gene of a receptor needed by HIV to infect human immune cells.

The gene scissors, part of a “second generation of designer nuclease,” dissect more effectively than enzymes previously used in research. “During testing the dissection was successful in more than half of the cells,” reported Prof. Dr. Boris Fehse from the Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation at the UKE.

In the coming years this type of somatic therapy, the removal of immune cells, which after being treated and transfused back into the patient, could benefit those with HIV. However, further positive results from future testing are required.

“If the current pre-clinical studies confirm the safety of the procedure, then due to the high rate of efficiency, and the massively improved precision when compared to first generation nuclease, coupled with the relatively simple application, we see a real possibility that we can soon begin with clinical testing,” says Prof. Fehse, head of the Research Department for Cell and Gene Therapy. Stopping the virus at the point of entry is the most promising strategy of today’s AIDS research.

The Human Immunodeficiency Virus (HIV) requires molecules at the surface of the immune cells (more precisely: T-Helper Cells) as a portal of entry. “During the initial stages of infection the chemokine receptor, CCR5, plays an essential role as a co-receptor.” In short, if CCR5 is not present on the surface of the T-helper cell then the HIV virus is unable to dock and infect the cell.

“In cooperation with the Heinrich-Pette-Institute here in Hamburg, we are able to show that the genetic changes caused by our newly developed enzyme provide infection protection against reference strains of the HIV virus.”

Fewer Side Effects Thanks to Messenger RNA

Prof. Fehse and the lead author, Dr. Ulrike Mock, reported in the online edition of the specialist journal “Nucleic Acids Research,” that the enzyme scissors named “CCR-Uco” was successful in destroying the CCR5 gene is more that 50% of the T-cells, a process known as gene knockout. To place the molecular scissors in the T-cell, the research team used a synthetically created messenger RNA, and a gene ferry.

“The use of the messenger RNA is, from a practical standpoint, far less complicated than using a virus for gene transfer,” explained Prof. Fehse. The lifespan of the messenger RNA within the cell is much shorter than that of a virus, and the degrading process is completed faster. This means that there is a notable reduction of unwanted side effects as there is the risk that the scissor enzyme would continue to attack the gene after the therapeutic part of its function has been completed.

Chance Discovery: “The Berlin-Patient”

We discovered that the retroactive removal of the CCR5 receptor could actually cure those infected with HIV by pure chance. In North America and Northern Europe, approximately one percent of the population has no CCR5 on their immune cells as the result of a genetic defect. Therefore, these individuals are almost completely protected against the HIV infection. A patient known in research circles as “The Berlin Patient” is the only HIV infected person known worldwide to have been cured, thanks to this genetic defect. The patient developed leukemia and was treated using a stem cell transplant. In this case, the stem cell donor had this advantageous genetic defect, which was transferred to the patient through bone marrow stem cells.

References:
U. Mock et. al. mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR51, Nucleic Acids Research, 2015 1 (DOI: 10.1093/nar/gkv469)

Contact:
Prof. Dr. Boris Fehse
Head of the Research Department for Cell and Gene Therapy
Interdisciplinary Clinic and Polyclinic for Stem Cell Transplantation
Universitätsklinikum Hamburg-Eppendorf
Martinistr. 52
20246 Hamburg
Telefon: (040) 7410-55518
E-Mail: fehse@uke.de

Saskia Lemm | idw - Informationsdienst Wissenschaft

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>