Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ONR Helps Undersea Robots Get the Big Picture

05.12.2011
Scientists have successfully transitioned fundamental research in autonomy to undersea gliders, demonstrating in recent sea tests how the new software, sponsored by the Office of Naval Research (ONR), can help robots become smarter at surveying large swaths of ocean.

“Using the new algorithms, the vehicle has a greater ability to make its own decisions without requiring a human in the loop,” said Marc Steinberg, program officer for ONR’s Adaptive Networks for Threat and Intrusion Detection or Termination (ANTIDOTE), a multi-disciplinary university research program.

With plans to deploy squadrons of air, surface and undersea robotic vehicles later this decade, the Department of the Navy is investing in basic research programs to improve autonomous system capabilities.

“Advancing autonomy for unmanned systems allows you the ability to do things that wouldn’t be practical otherwise because we don’t have enough warfighters or communication today,” said Steinberg, who works in ONR’s Naval Air Warfare and Weapons Department. “If you incorporate some intelligence on the vehicles that can solve complex mission problems, then we can enable wholly new capabilities that can be achieved with limited numbers of people and communications in complicated, dynamic environments.”

ONR provided funding to researchers at the Massachusetts Institute of Technology (MIT) and University of Southern California (USC) to advance the intelligence of autonomous vehicles under both ANTIDOTE and a related university program called Smart Adaptive Reliable Teams for Persistent Surveillance. They developed a persistent surveillance theory that provides a framework for decision-making software that maximizes a robot’s collection of information over a given area. It gives some guarantees on performance in dynamic environments.

“The ability to do surveillance that takes into account the actual conditions of the environment brings a whole new level of automation and capability,” said Dr. Daniela Rus, co-director of MIT’s Computer Science and Artificial Intelligence Laboratory Center for Robotics. “We have come up with a solution that lets the robot do local reasoning to make decisions and adjust the path autonomously without having to come up to the surface to interact with humans.”

The scientists produced an algorithm that incorporates both the user’s sensing priorities and environmental factors, such as ocean currents, into a computer model to help undersea robots conduct surveys and mapping missions more efficiently.

Tests proved the benefits of using the new algorithm. The scientists conducted two separate experiments using underwater robots called gliders, operated by oceanographers. They used two gliders, one with the algorithm and one without, to measure whether the experimental technology yielded better maps of algae blooms and other underwater phenomena in the Pacific Ocean.

“In areas where the oceanographers wanted more information, the persistent surveillance algorithm actually produces more detail,” said Dr. Gaurav S. Sukhatme, ANTIDOTE’s principal investigator and director of USC’s Robotic Embedded Systems Lab. “The system can automatically figure out how to divide its time between areas that are more interesting and areas that are less interesting.”

The algorithm helps the gliders decide when to spend more time looking at regions that have changes in activity or environmental factors. Without the control algorithm, gliders paid equal attention to all areas and acquired less information during the experiments in Monterey Bay, Calif., and along the southern coastal waters near Los Angeles in October and November 2010. The first experiment lasted a period of three weeks; the second ran for two weeks. A third experiment in August 2011 took place in the Southern California Bight for 10 days. Results of the single-glider test are being analyzed.

Though the gliders were an ideal first test of the persistent surveillance theory and algorithm, the software is applicable to many different machines and robots, the scientists said.

About the Office of Naval Research

The Department of the Navy’s Office of Naval Research (ONR) provides the science and technology necessary to maintain the Navy and Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel, with additional employees at the Naval Research Lab in Washington, D.C.

Office of Naval Research
Corporate Strategic Communications
875 N. Randolph St., #1225-D
Arlington, Va., 22203-1771
Office: (703) 696-5031
Fax: (703) 696-5940
E-mail: onrcsc@onr.navy.mil
Web: www.onr.navy.mil
Facebook: www.facebook.com/officeofnavalresearch

Tammy White | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>