Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NSF-funded Superhero Supercomputer Helps Battle Autism

'Gordon,' a supercomputer with unique flash memory, helps identify gene-related paths to treating mental disorders
When it officially came online at the San Diego Supercomputer Center (SDSC) in early January 2012, Gordon was instantly impressive. In one demonstration, it sustained more than 35 million input/output operations per second--then, a world record.

Input/output operations are an important measure for data intensive computing, indicating the ability of a storage system to quickly communicate between an information processing system, such as a computer, and the outside world. Input/output operations specify how fast a system can retrieve randomly organized data common in large datasets and process it through data mining applications.

Supercomputer Gordon uses massive amounts of flash memory to retrieve randomly organized data.

The supercomputer's record-breaking feat wasn't a surprise; after all, Gordon is named after a comic strip superhero, Flash Gordon.

Gordon's new and unique architecture employs massive amounts of the type of flash memory common in cell phones and laptops--hence its name. The system is used by scientists whose research requires the mining, searching and/or creating of large databases for immediate or later use, including mapping genomes for applications in personalized medicine and examining computer automation of stock trading by investment firms on Wall Street.

Commissioned by the National Science Foundation (NSF) in 2009 for $20 million, Gordon is part of NSF's Extreme Science and Engineering Discovery Environment, or XSEDE program, a nationwide partnership comprising 16 high-performance computers and high-end visualization and data analysis resources.

"Gordon is a unique machine in NSF's Advanced Cyberinfrastructure/XSEDE portfolio," said Barry Schneider, NSF program director for advanced cyberinfrastructure. "It was designed to handle scientific problems involving the manipulation of very large data. It is differentiated from most other resources we support in having a large solid-state memory, 4 GB per core, and the capability of simulating a very large shared memory system with software."

Last month, a team of researchers from SDSC, the United States and the Institute Pasteur in France reported in the journal Genes, Brain and Behavior that they used Gordon to devise a novel way to describe a time-dependent gene-expression process in the brain that can be used to guide the development of treatments for mental disorders such as autism-spectrum disorders and schizophrenia.

The researchers identified the hierarchical tree of coherent gene groups and transcription-factor networks that determine the patterns of genes expressed during brain development. They found that some "master transcription factors" at the top level of the hierarchy regulated the expression of a significant number of gene groups.

The scientists' findings can be used for selection of transcription factors that could be targeted in the treatment of specific mental disorders.

"We live in the unique time when huge amounts of data related to genes, DNA, RNA, proteins, and other biological objects have been extracted and stored," said lead author Igor Tsigelny, a research scientist with SDSC as well as with UC San Diego's Moores Cancer Center and its Department of Neurosciences.

"I can compare this time to a situation when the iron ore would be extracted from the soil and stored as piles on the ground. All we need is to transform the data to knowledge, as ore to steel. Only the supercomputers and people who know what to do with them will make such a transformation possible," he said.

This research is one of a number of high-value projects being conducted at SDSC with Gordon. More information is available in the attached video.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485
Lisa-Joy Zgorski, NSF (703) 292-8311
Warren Froelich, San Diego Supercomputer Center (619) 534-8564
Program Contacts
Barry I. Schneider, NSF (703) 292-7383
Principal Investigators
Igor Tsigelny, San Diego Supercomputer Center (858) 822-0953
Related Websites
Gordon Achieves World Record for Input/output Operations:
SDSC’s Gordon Supercomputer Used in 61-Million-Person Facebook Experiment:

Researchers Use Gordon to Reveal Behaviors of the Tiniest Water Droplets:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>