Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF-funded Superhero Supercomputer Helps Battle Autism

27.03.2013
'Gordon,' a supercomputer with unique flash memory, helps identify gene-related paths to treating mental disorders
When it officially came online at the San Diego Supercomputer Center (SDSC) in early January 2012, Gordon was instantly impressive. In one demonstration, it sustained more than 35 million input/output operations per second--then, a world record.

Input/output operations are an important measure for data intensive computing, indicating the ability of a storage system to quickly communicate between an information processing system, such as a computer, and the outside world. Input/output operations specify how fast a system can retrieve randomly organized data common in large datasets and process it through data mining applications.

Supercomputer Gordon uses massive amounts of flash memory to retrieve randomly organized data.

The supercomputer's record-breaking feat wasn't a surprise; after all, Gordon is named after a comic strip superhero, Flash Gordon.

Gordon's new and unique architecture employs massive amounts of the type of flash memory common in cell phones and laptops--hence its name. The system is used by scientists whose research requires the mining, searching and/or creating of large databases for immediate or later use, including mapping genomes for applications in personalized medicine and examining computer automation of stock trading by investment firms on Wall Street.

Commissioned by the National Science Foundation (NSF) in 2009 for $20 million, Gordon is part of NSF's Extreme Science and Engineering Discovery Environment, or XSEDE program, a nationwide partnership comprising 16 high-performance computers and high-end visualization and data analysis resources.

"Gordon is a unique machine in NSF's Advanced Cyberinfrastructure/XSEDE portfolio," said Barry Schneider, NSF program director for advanced cyberinfrastructure. "It was designed to handle scientific problems involving the manipulation of very large data. It is differentiated from most other resources we support in having a large solid-state memory, 4 GB per core, and the capability of simulating a very large shared memory system with software."

Last month, a team of researchers from SDSC, the United States and the Institute Pasteur in France reported in the journal Genes, Brain and Behavior that they used Gordon to devise a novel way to describe a time-dependent gene-expression process in the brain that can be used to guide the development of treatments for mental disorders such as autism-spectrum disorders and schizophrenia.

The researchers identified the hierarchical tree of coherent gene groups and transcription-factor networks that determine the patterns of genes expressed during brain development. They found that some "master transcription factors" at the top level of the hierarchy regulated the expression of a significant number of gene groups.

The scientists' findings can be used for selection of transcription factors that could be targeted in the treatment of specific mental disorders.

"We live in the unique time when huge amounts of data related to genes, DNA, RNA, proteins, and other biological objects have been extracted and stored," said lead author Igor Tsigelny, a research scientist with SDSC as well as with UC San Diego's Moores Cancer Center and its Department of Neurosciences.

"I can compare this time to a situation when the iron ore would be extracted from the soil and stored as piles on the ground. All we need is to transform the data to knowledge, as ore to steel. Only the supercomputers and people who know what to do with them will make such a transformation possible," he said.

This research is one of a number of high-value projects being conducted at SDSC with Gordon. More information is available in the attached video.

Media Contacts
Bobbie Mixon, NSF (703) 292-8485 bmixon@nsf.gov
Lisa-Joy Zgorski, NSF (703) 292-8311 lzgorski@nsf.gov
Warren Froelich, San Diego Supercomputer Center (619) 534-8564 froelich@sdsc.edu
Program Contacts
Barry I. Schneider, NSF (703) 292-7383 bschneid@nsf.gov
Principal Investigators
Igor Tsigelny, San Diego Supercomputer Center (858) 822-0953 itsigelny@ucsd.edu
Related Websites
Gordon Achieves World Record for Input/output Operations: http://www.sdsc.edu/Gallery/vd_GordonDebut.html
SDSC’s Gordon Supercomputer Used in 61-Million-Person Facebook Experiment: http://www.sdsc.edu/News%20Items/PR092012_fb_vote.html

Researchers Use Gordon to Reveal Behaviors of the Tiniest Water Droplets: http://www.sdsc.edu/News%20Items/PR081512_water_behavior.html


The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget is $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives over 50,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards nearly $420 million in professional and service contracts yearly.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>