Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature’s designs inspire research into new light-based technologies

18.09.2014

Seashells and electromagnetic waves, spiders and the structure of color connect in optics and photonics studies

"Nature has developed, very cleverly, some lessons on how to create the features that we desire in optical design," said Joseph Shaw, director of the Optical Technology Center at Montana State University. "As we explore surfaces and structures at the nanoscale, we'll discover them."


Understanding how particle scatter (above) and minerals (top) affect water color in pools at Yellowstone National Park may provide important information for the development of alternative fuels. Phenomena of light in nature such as this were the topic of a conference at SPIE Optics + Photonics, with results published in the SPIE Digital Library. (Photographs by Joseph Shaw)

Some of those lessons were presented in San Diego in August during a conference called "The Nature of Light: Light in Nature" chaired by Shaw and Rongguang Liang of the University of Arizona College of Optical Sciences. The conference was part of SPIE Optics + Photonics, sponsored by SPIE, the international society for optics and photonics.

The conference is particularly relevant as the optics and photonics community prepares for the United Nations International Year of Light 2015, Shaw said. "Such lessons from nature not only remind us of how light-based technologies touch all of our lives and help solve challenges in energy, healthcare, communications, and other areas, but they also remind us to pause and appreciate the visual beauty found throughout nature."

Shaw, whose research as a professor in electrical and computer engineering involves developing optical sensors for applications ranging from imaging of clouds to laser-detection of fish, said that observing how nature solves problems is particularly helpful for optical designers and engineers working with very small structures.

Insect wings that absorb all of the visible light spectrum and iridescent shells, for example, each possess optical surfaces that might find design applications one day, perhaps as camouflage.

Some wings have antireflective cone-like structures of a few nanometers that absorb virtually the entire visible spectrum, a team from the University of Namur (Louis Dellieu, et al.) reported. In the grey cicada, absorption is a product of the distinctive shape of tiny surface cones.

Iridescence of the lining of mollusk shells was explored by a team from Colgate University (R. A. Metzler, et al.), who reported on the polarization effects of the lining, known as nacre, or mother of pearl. It consists of up to 30,000 layers of tiny calcium carbonate "bricks" -- just 0.5 microns, or a 200th of the diameter of a human hair -- held together by a "mortar" of organic chitin. Reflected light from the lining produces the shells familiar array of colors.

"We have the tools for nanoengineering and nanoexploration," Shaw said. "We can do reverse engineering of the structures."

Color of vivid blue pools, some as hot as 250 degrees Fahrenheit, at Yellowstone National Park in Wyoming and Montana has only little to do with reflection of sky light, a paper by Shaw and others reported. The blue comes from the scatter of particles in the water. The deeper the water, the more dominant the scatter and the richer the blue. Red, orange, and yellow colors of other pools are driven by varieties of microbes on the rock surfaces under the water and related to the temperature of water in each pool.

Applications of these findings could include using a color imager to infer information about such pools and their resident microbe communities and what causes their presence. This could connect with NASA-funded research, because of the similarity of Yellowstone microbes with possible early forms of life on Earth and other planets. Ongoing Yellowstone research is even exploring how these microbes might inspire development of alternative fuels.

Optical labs looking for higher-efficiency solar cells or light-emitting diodes (LEDs) might one day use genetic algorithms to streamline their work. A team from Namur University of Namur (Alexandre Mayer, et al.), noting that thinking through a design question could mean millions or billions of options to check, demonstrated that a genetic algorithm can quickly make many small changes. A lab might need to explore only a few hundred options instead of millions. The genetic algorithm would work the way natural evolution does: scanning all the possibilities and quickly narrowing down the search.

Among other topics, presenters discussed:

Conference proceedings are now in publication, with papers going up in the SPIE Digital Library as soon as each is approved.

SPIE is the international society for optics and photonics, a not-for-profit organization founded in 1955 to advance light-based technologies. The Society serves more than 235,000 constituents from approximately 155 countries, offering conferences, continuing education, books, journals, and a digital library in support of interdisciplinary information exchange, professional networking, and patent precedent. SPIE provided over $3.2 million in support of education and outreach programs in 2012.

Media Contact:
Amy Nelson
Public Relations Manager
amy@spie.org
Tel: +1 360 685 5478

Amy Nelson | Eurek Alert!
Further information:
http://spie.org/x110126.xml

More articles from Interdisciplinary Research:

nachricht 36 big data research projects
21.02.2017 | Schweizerischer Nationalfonds SNF

nachricht Coastal wetlands excel at storing carbon
01.02.2017 | University of Maryland

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>